Abstract
Diffusion models have demonstrated empirical successes in various applications and can be adapted to task-specific needs via guidance. This paper studies a form of gradient guidance for adapting a pre-trained diffusion model towards optimizing user-specified objectives. We establish a mathematical framework for guided diffusion to systematically study its optimization theory and algorithmic design. Our theoretical analysis spots a strong link between guided diffusion models and optimization: gradient-guided diffusion models are essentially sampling solutions to a regularized optimization problem, where the regularization is imposed by the pre-training data. As for guidance design, directly bringing in the gradient of an external objective function as guidance would jeopardize the structure in generated samples. We investigate a modified form of gradient guidance based on a forward prediction loss, which leverages the information in pre-trained score functions and provably preserves the latent structure. We further consider an iteratively fine-tuned version of gradient-guided diffusion where guidance and score network are both updated with newly generated samples. This process mimics a first-order optimization iteration in expectation, for which we proved Õ(1/K) convergence rate to the global optimum when the objective function is concave. Our code is released at https://github.com/yukang123/GGDMOptim.git.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 37 |
State | Published - 2024 |
Event | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada Duration: Dec 9 2024 → Dec 15 2024 |
Funding
Mengdi Wang acknowledges the support by NSF IIS-2107304, NSF CPS-2312093, ONR 1006977 and Genmab.
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing