Granular lift forces predict vertical motion of a sand-swimming robot

Ryan D. Maladen*, Paul B. Umbanhowar, Yang Ding, Andrew Masse, Daniel I. Goldman

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Scopus citations

Abstract

Previously we modeled the undulatory subsurface locomotion of the sandfish lizard with a sand-swimming robot which displayed performance comparable to the organism. In this work we control the lift forces on the robot by varying its head shape and demonstrate that these granular forces predict the vertical motion of the robot. Inspired by the tapered head of the sandfish lizard, we drag a wedge shaped object horizontally and parallel to its lower face through a granular medium and show that by varying the angle of the upper leading surface of the wedge, α, the lift force can be varied from positive to negative. Testing the robot with these wedges as heads results in vertical motion in the same direction as the lift force in the drag experiments. As the robot moves forward, the force on its head normal to the body plane results in a net torque imbalance which pitches the robot causing it to rise or sink within the medium. Since repeatedly varying α for a wedge head to achieve a desired lift is impractical, we test robot heads that approximate a wedge head inclined at varying angles by changing the angle of the bottom and top surfaces of the wedge, and show that similar lift control is achieved. Our results provide principles for the construction of robots that will be able to follow arbitrary trajectories within complex substrates like sand, and also lend support to hypotheses that morphological adaptations of desert-dwelling organisms aid in their subsurface locomotion.

Original languageEnglish (US)
Title of host publication2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Pages1398-1403
Number of pages6
DOIs
StatePublished - 2011
Event2011 IEEE International Conference on Robotics and Automation, ICRA 2011 - Shanghai, China
Duration: May 9 2011May 13 2011

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Country/TerritoryChina
CityShanghai
Period5/9/115/13/11

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Granular lift forces predict vertical motion of a sand-swimming robot'. Together they form a unique fingerprint.

Cite this