Granularity and elasticity adaptation in visual tracking

Ming Yang*, Ying Wu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The observation models in tracking algorithms are critical to both tracking performance and applicable scenarios but are often simplified to focus on fixed level of certain target properties such as appearances and structures. In this paper, we propose a unified tracking paradigm in which targets are represented by Markov random fields of interest regions and introduce a new way to adapt observation models by automatically tuning the feature granularity and model elasticity, i.e. the abstraction level of features and the model's degree of flexibility to tolerate deformations. Specifically, we employ a multi-scale scheme to extract features from interest regions and adjust the parameters of the potential functions of the MRF model to maximize the likelihoods of tracking results. Experiments demonstrate the method can estimate translation, scaling and rotation and deal with deformation, partial occlusions, and camouflage objects within this unified framework.

Original languageEnglish (US)
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
StatePublished - 2008
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: Jun 23 2008Jun 28 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Other

Other26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period6/23/086/28/08

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Granularity and elasticity adaptation in visual tracking'. Together they form a unique fingerprint.

Cite this