TY - JOUR
T1 - Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator
AU - Deng, Anmei
AU - Chen, Sunxiao
AU - Li, Qing
AU - Lyu, Shu Chen
AU - Clayberger, Carol
AU - Krensky, Alan M.
PY - 2005/5/1
Y1 - 2005/5/1
N2 - Granulysin, a cationic protein produced by activated human CTL and NK cells, is cytolytic against microbial and tumor targets. In this study we show that granulysin also functions as a chemoattractant and activates monocytes to produce cytokines/chemokines. Although granulysin-mediated cytotoxicity occurs at micromolar concentrations, chemoattraction occurs in the nanomolar range, and immune activation occurs over a wide range of concentrations (nanomolar to micromolar). Granulysin causes a 2- to 7-fold increase in chemotaxis of monocytes, CD4+, and CD8+ memory (CD45RO) but not naive (CD45RA) T cells, NK cells, and mature, but not immature, monocyte-derived dendritic cells. Pertussis toxin treatment abrogates chemoattraction by granulysin, indicating involvement of G-protein-coupled receptor(s). At low concentrations (10 nM), granulysin promotes a 3- to 10-fold increase in MCP-1 and RANTES produced by monocytes and U937 cells, while a 2-fold increase in TNF-α production by LPS-stimulated monocytes requires higher concentrations of granulysin (micromolar). Taken together, these data indicate that the local concentration of granulysin is critical for the biologic activity, with high concentrations resulting in cytotoxicity while lower concentrations, presumably further from the site of granulysin release, actively recruit immune cells to sites of inflammation.
AB - Granulysin, a cationic protein produced by activated human CTL and NK cells, is cytolytic against microbial and tumor targets. In this study we show that granulysin also functions as a chemoattractant and activates monocytes to produce cytokines/chemokines. Although granulysin-mediated cytotoxicity occurs at micromolar concentrations, chemoattraction occurs in the nanomolar range, and immune activation occurs over a wide range of concentrations (nanomolar to micromolar). Granulysin causes a 2- to 7-fold increase in chemotaxis of monocytes, CD4+, and CD8+ memory (CD45RO) but not naive (CD45RA) T cells, NK cells, and mature, but not immature, monocyte-derived dendritic cells. Pertussis toxin treatment abrogates chemoattraction by granulysin, indicating involvement of G-protein-coupled receptor(s). At low concentrations (10 nM), granulysin promotes a 3- to 10-fold increase in MCP-1 and RANTES produced by monocytes and U937 cells, while a 2-fold increase in TNF-α production by LPS-stimulated monocytes requires higher concentrations of granulysin (micromolar). Taken together, these data indicate that the local concentration of granulysin is critical for the biologic activity, with high concentrations resulting in cytotoxicity while lower concentrations, presumably further from the site of granulysin release, actively recruit immune cells to sites of inflammation.
UR - http://www.scopus.com/inward/record.url?scp=17844405622&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17844405622&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.174.9.5243
DO - 10.4049/jimmunol.174.9.5243
M3 - Article
C2 - 15843520
AN - SCOPUS:17844405622
SN - 0022-1767
VL - 174
SP - 5243
EP - 5248
JO - Journal of Immunology
JF - Journal of Immunology
IS - 9
ER -