TY - JOUR
T1 - Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells
AU - Saini, Reena V.
AU - Wilson, Christine
AU - Finn, Michael W.
AU - Wang, Tianhong
AU - Krensky, Alan M.
AU - Clayberger, Carol
PY - 2011/3/15
Y1 - 2011/3/15
N2 - Granulysin is a human cytolytic molecule present in cytotoxic granules with perforin and granzymes. Recombinant 9-kDa granulysin kills a variety of microbes, including bacteria, yeast, fungi, and parasites, and induces apoptosis in tumor cells by causing intracellular calcium overload, mitochondrial damage, and activation of downstream caspases. Reasoning that granulysin delivered by cytotoxic cells may work in concert with other molecules, we crossed granulysin transgenic (GNLY+/-) mice onto perforin (perf)- or granzyme B (gzmb)-deficient mice to examine granulysin-mediated killing in a more physiologic whole-cell system. Splenocytes from these animals were activated in vitro with IL-15 to generate cytolytic T cells and NK cells. Cytotoxic cells expressing granulysin require perforin, but not granzyme B, to cause apoptosis of targets. Whereas granzyme B induces mitochondrial damage and activates caspases-3 and -9 in targets, cytotoxic cell-delivered granulysin induces endoplasmic reticulum stress and activates caspase-7 with no effect on mitochondria or caspases-3 and -9. In addition, recombinant granulysin and cell-delivered granulysin activate distinct apoptotic pathways in target cells. These findings suggest that cytotoxic cells have evolved multiple nonredundant cell death pathways, enabling host defense to counteract escape mechanisms employed by pathogens or tumor cells.
AB - Granulysin is a human cytolytic molecule present in cytotoxic granules with perforin and granzymes. Recombinant 9-kDa granulysin kills a variety of microbes, including bacteria, yeast, fungi, and parasites, and induces apoptosis in tumor cells by causing intracellular calcium overload, mitochondrial damage, and activation of downstream caspases. Reasoning that granulysin delivered by cytotoxic cells may work in concert with other molecules, we crossed granulysin transgenic (GNLY+/-) mice onto perforin (perf)- or granzyme B (gzmb)-deficient mice to examine granulysin-mediated killing in a more physiologic whole-cell system. Splenocytes from these animals were activated in vitro with IL-15 to generate cytolytic T cells and NK cells. Cytotoxic cells expressing granulysin require perforin, but not granzyme B, to cause apoptosis of targets. Whereas granzyme B induces mitochondrial damage and activates caspases-3 and -9 in targets, cytotoxic cell-delivered granulysin induces endoplasmic reticulum stress and activates caspase-7 with no effect on mitochondria or caspases-3 and -9. In addition, recombinant granulysin and cell-delivered granulysin activate distinct apoptotic pathways in target cells. These findings suggest that cytotoxic cells have evolved multiple nonredundant cell death pathways, enabling host defense to counteract escape mechanisms employed by pathogens or tumor cells.
UR - http://www.scopus.com/inward/record.url?scp=79953192506&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79953192506&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1003409
DO - 10.4049/jimmunol.1003409
M3 - Article
C2 - 21296981
AN - SCOPUS:79953192506
SN - 0022-1767
VL - 186
SP - 3497
EP - 3504
JO - Journal of Immunology
JF - Journal of Immunology
IS - 6
ER -