GraphPlanner: Floorplanning with Graph Neural Network

Yiting Liu, Ziyi Ju, Zhengming Li, Mingzhi Dong*, Hai Zhou, Jia Wang, Fan Yang, Xuan Zeng, Li Shang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Chip floorplanning has long been a critical task with high computation complexity in the physical implementation of VLSI chips. Its key objective is to determine the initial locations of large chip modules with minimized wirelength while adhering to the density constraint, which in essence is a process of constructing an optimized mapping from circuit connectivity to physical locations. Proven to be an NP-hard problem, chip floorplanning is difficult to be solved efficiently using algorithmic approaches. This article presents GraphPlanner, a variational graph-convolutional-network-based deep learning technique for chip floorplanning. GraphPlanner is able to learn an optimized and generalized mapping between circuit connectivity and physical wirelength and produce a chip floorplan using efficient model inference. GraphPlanner is further equipped with an efficient clustering method, a unification of hyperedge coarsening with graph spectral clustering, to partition a large-scale netlist into high-quality clusters with minimized inter-cluster weighted connectivity. GraphPlanner has been integrated with two state-of-the-art mixed-size placers. Experimental studies using both academic benchmarks and industrial designs demonstrate that compared to state-of-the-art mixed-size placers alone, GraphPlanner improves placement runtime by 25% with 4% wirelength reduction on average.

Original languageEnglish (US)
Article number3555804
JournalACM Transactions on Design Automation of Electronic Systems
Volume28
Issue number2
DOIs
StatePublished - Dec 24 2022

Funding

This research is supported partly by National Natural Science Foundation of China (NSFC) research projects 62090025, 62141407, 61822402, 61974032, and 61929102, National Key R&D Program of China 2020YFA0711900, 2020YFA0711901, and the young scientist project of MOE innovation platform.

Keywords

  • Floorplanning
  • deep learning
  • electronic design automation
  • graph neural network
  • physical design

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'GraphPlanner: Floorplanning with Graph Neural Network'. Together they form a unique fingerprint.

Cite this