Gravitational Microlensing Rates in Milky Way Globular Clusters

Fulya Klroǧlu, Newlin C. Weatherford, Kyle Kremer, Claire S. Ye, Giacomo Fragione, Frederic A. Rasio

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Many recent observational and theoretical studies suggest that globular clusters (GCs) host compact object populations large enough to play dominant roles in their overall dynamical evolution. Yet direct detection, particularly of black holes and neutron stars, remains rare and limited to special cases, such as when these objects reside in close binaries with bright companions. Here we examine the potential of microlensing detections to further constrain these dark populations. Based on state-of-the-art GC models from the CMC Cluster Catalog, we estimate the microlensing event rates for black holes, neutron stars, white dwarfs (WDs), and, for comparison, also for M dwarfs in Milky Way GCs, as well as the effects of different initial conditions on these rates. Among compact objects, we find that WDs dominate the microlensing rates, simply because they largely dominate by numbers. We show that microlensing detections are in general more likely in GCs with higher initial densities, especially in clusters that undergo core collapse. We also estimate microlensing rates in the specific cases of M22 and 47 Tuc using our best-fitting models for these GCs. Because their positions on the sky lie near the rich stellar backgrounds of the Galactic bulge and the Small Magellanic Cloud, respectively, these clusters are among the Galactic GCs best suited for dedicated microlensing surveys. The upcoming 10 yr survey with the Rubin Observatory may be ideal for detecting lensing events in GCs.

Original languageEnglish (US)
Article number181
JournalAstrophysical Journal
Volume928
Issue number2
DOIs
StatePublished - Apr 1 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Gravitational Microlensing Rates in Milky Way Globular Clusters'. Together they form a unique fingerprint.

Cite this