Halogenated ether, alcohol, and alkane anesthetics activate TASK-3 tandem pore potassium channels likely through a common mechanism

Anita Luethy, James D. Boghosian, Rithu Srikantha, Joseph F. Cotten*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


The TWIK-related acid-sensitive potassium channel 3 (TASK-3; KCNK9) tandem pore potassium channel function is activated by halogenated anesthetics through binding at a putative anestheticbinding cavity. To understand the pharmacologic requirements for TASK-3 activation, we studied the concentration-response of TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, halothane, α-chloralose, 2,2,2-trichloroethanol [TCE], and chloral hydrate), to ethanol, and to a panel of halogenated methanes and alcohols. We used mutagenesis to probe the anesthetic-binding cavity as observed in a TASK-3 homology model. TASK-3 activation was quantified by Ussing chamber voltage clamp analysis. We mutagenized the residue Val-136, which lines the anesthetic-binding cavity, its flanking residues (132 to 140), and Leu-122, a pore-gating residue. The 2-halogenated ethanols activate wild-type TASK-3 with the following rank order efficacy (normalized current [95% confidence interval]): 2,2,2-tribromo-(267% [240-294]) > 2,2,2-trichloro-(215% [196-234]) > chloral hydrate (165% [161-176]) > 2,2-dichloro-> 2-chloro ∼ 2,2,2- trifluoroethanol > ethanol. Similarly, carbon tetrabromide (296% [245-346]), carbon tetrachloride (180% [163-196]), and 1,1,1,3,3,3- hexafluoropropanol (200% [194-206]) activate TASK-3, whereas the larger carbon tetraiodide and α-chloralose inhibit. Clinical agents activate TASK-3 with the following rank order efficacy: halothane (207% [202-212]) > isoflurane (169% [161-176]) > sevoflurane (164%[150-177]).desflurane (119% [109-129]). Mutations at and near residue-136 modify TCE activation of TASK- 3, and interestingly M159W, V136E, and L122D were resistant to both isoflurane and TCE activation. TASK-3 function is activated by a multiple agents and requires a halogenated substituent between ∼30 and 232 cm3/mol volume with potency increased by halogen polarizeability. Val-136 and adjacent residues may mediate anesthetic binding and stabilize an open state regulated by pore residue Leu-122. Isoflurane and TCE likely share commonalities in their mechanism of TASK-3 activation.

Original languageEnglish (US)
Pages (from-to)620-629
Number of pages10
JournalMolecular pharmacology
Issue number6
StatePublished - Jun 2017

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology


Dive into the research topics of 'Halogenated ether, alcohol, and alkane anesthetics activate TASK-3 tandem pore potassium channels likely through a common mechanism'. Together they form a unique fingerprint.

Cite this