Heart rate variability and susceptibility for sudden cardiac death: An example of multivariable optimal discriminant analysis

Paul R. Yarnold*, Robert C. Soltysik, Gary J. Martin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The statistical classification problem motivates the search for an analytical procedure capable of classifying observations accurately into one of two or more groups on the basis of information with respect to one or more attributes, and constitutes a fundamental challenge for all scientific disciplines. Although there are many classification methodologies, only optimal discriminant analysis (ODA) explicitly guarantees that the discriminant classifier will maximize classification accuracy in the training sample. This paper presents the first example of multivariable ODA (MultiODA) in medicine, for an application in which we employ three attributes (age and two measures of heart rate variability) to predict susceptibility to sudden cardiac death for a sample of 45 patients. MultiODA outperformed logistic regression analysis on every classification performance index (overall accuracy, sensitivity, specificity, and positive and negative predictive values). In fact, the worst performance result achieved by MultiODA (in total sample or leave‐one‐out validity analysis) exceeded the best performance achieved by logistic regression analysis. We conclude that ODA offers promise as a methodology capable of improving the classification performance achieved by medical researchers, and that clearly merits investigation in future research.

Original languageEnglish (US)
Pages (from-to)1015-1021
Number of pages7
JournalStatistics in Medicine
Volume13
Issue number10
DOIs
StatePublished - May 30 1994

ASJC Scopus subject areas

  • Epidemiology
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Heart rate variability and susceptibility for sudden cardiac death: An example of multivariable optimal discriminant analysis'. Together they form a unique fingerprint.

Cite this