Hereditary distal renal tubular acidosis: New understandings

D. Batlle*, H. Ghanekar, S. Jain, A. Mitra

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

67 Scopus citations

Abstract

The primary or hereditary form of distal renal tubular acidosis (dRTA), although rare, has received increased attention recently because of dramatic advances in the understanding of its genetic basis. The final regulation of renal acid excretion is effected by various acid/base transporters localized in specialized cells in the cortical collecting and outer medullary collecting tubules. Inherited defects in two of the key acid/base transporters involved in distal acidification, as well as mutations in the cytosolic carbonic anhydrase gene, can cause dRTA. The syndrome is inherited in both autosomal dominant and recessive patterns; patients with recessive dRTA present with either acute illness or growth failure at a young age, sometimes accompanied by deafness, whereas dominant dRTA is usually a milder disease and involves no hearing loss. The AE1 gene encodes two Cl-/HCO3- exchangers that are expressed in the erythrocyte and in the acid-secreting intercalated cells of the kidney. AE1 contributes to urinary acidification by providing the major exit route for HCO3- across the basolateral membrane. Several mutations in the AE1 gene cosegregate with dominant dRTA. The modest degree of hypofunction exhibited in vitro by these mutations, however, does not explain the abnormal distal acidification phenotype. Other AE1 mutations have been linked to a recessive syndrome of dRTA and hemolytic anemia in which hypofunction can be discerned by in vitro studies. Several mutations in the carbonic anyhdrase II gene are associated with the autosomal recessive syndrome of osteopetrosis, renal tubular acidosis, and cerebral calcification. Some of these individuals present with deafness of the conductive type. By contrast, more recent studies have shown that mutations in ATP6B1, encoding the B-subtype unit of the apical H+ ATPase, are responsible for a group of patients with autosomal recessive dRTA associated with sensorineural deafness. Thus, the presence of deafness and the type provide an important clue to the genetic lesion underlying hereditary dRTA.

Original languageEnglish (US)
Pages (from-to)471-484
Number of pages14
JournalAnnual review of medicine
Volume52
DOIs
StatePublished - 2001

Keywords

  • AE1 gene
  • ATP6B1 gene
  • Acid/base physiology
  • Chloride/bicarbonate exchange
  • H ATPase

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Hereditary distal renal tubular acidosis: New understandings'. Together they form a unique fingerprint.

Cite this