TY - GEN
T1 - High-frequency tone-pip-evoked otoacoustic emissions in chinchillas
AU - Siegel, Jonathan H.
AU - Charaziak, Karolina K.
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/12/31
Y1 - 2015/12/31
N2 - We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.
AB - We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.
UR - http://www.scopus.com/inward/record.url?scp=84984584119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84984584119&partnerID=8YFLogxK
U2 - 10.1063/1.4939400
DO - 10.1063/1.4939400
M3 - Conference contribution
AN - SCOPUS:84984584119
T3 - AIP Conference Proceedings
BT - Mechanics of Hearing
A2 - Corey, David P.
A2 - Karavitaki, K. Domenica
PB - American Institute of Physics Inc.
T2 - 12th International Workshop on the Mechanics of Hearing: Protein to Perception
Y2 - 23 June 2014 through 29 June 2014
ER -