Abstract
On-Line Analytical Processing (OLAP) techniques are increasingly being used in decision support systems to provide analysis of data. Queries posed on such systems are quite complex and require different views of data. Analytical models need to capture the multidimensionality of the underlying data, a task for which multidimensional databases are well suited. Multidimensional OLAP systems store data in multidimensional arrays on which analytical operations are performed. Knowledge discovery and data mining requires complex operations on the underlying data which can be very expensive in terms of computation time.. High performance parallel systems can reduce this analysis time. Precomputed aggregate calculations in a Data Cube can provide efficient query processing for OLAP applications. In this article, we present algorithms for construction of data cubes on distributed-memory parallel computers. Data is loaded from a relational database into a multidimensional array. We present two methods, sort-based and hash-based for loading the base cube and compare their performances. Data cubes are used to perform consolidation queries used in roll-up operations using dimension hierarchies. Finally, we show how data cubes are used for data mining using Attribute Focusing techniques. We present results for these on the IBM-SP2 parallel machine. Results show that our algorithms and techniques for OLAP and data mining on parallel systems are scalable to a large number of processors, providing a high performance platform for such applications.
Original language | English (US) |
---|---|
Pages (from-to) | 391-417 |
Number of pages | 27 |
Journal | Data Mining and Knowledge Discovery |
Volume | 1 |
Issue number | 4 |
DOIs | |
State | Published - 1997 |
Keywords
- Attribute Focusing
- Data Cube
- Data Mining
- High Performance
- Parallel Computing
ASJC Scopus subject areas
- Information Systems
- Computer Science Applications
- Computer Networks and Communications