High quality factor phase gradient metasurfaces

Mark Lawrence*, David R. Barton*, Jefferson Dixon, Jung Hwan Song, Jorik van de Groep, Mark L. Brongersma, Jennifer A. Dionne*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

Dielectric microcavities with quality factors (Q-factors) in the thousands to billions markedly enhance light–matter interactions, with applications spanning high-efficiency on-chip lasing, frequency comb generation and modulation and sensitive molecular detection. However, as the dimensions of dielectric cavities are reduced to subwavelength scales, their resonant modes begin to scatter light into many spatial channels. Such enhanced scattering is a powerful tool for light manipulation, but also leads to high radiative loss rates and commensurately low Q-factors, generally of order ten. Here, we describe and experimentally demonstrate a strategy for the generation of high Q-factor resonances in subwavelength-thick phase gradient metasurfaces. By including subtle structural perturbations in individual metasurface elements, resonances are created that weakly couple free-space light into otherwise bound and spatially localized modes. Our metasurface can achieve Q-factors >2,500 while beam steering light to particular directions. High-Q beam splitters are also demonstrated. With high-Q metasurfaces, the optical transfer function, near-field intensity and resonant line shape can all be rationally designed, providing a foundation for efficient, free-space-reconfigurable and nonlinear nanophotonics.

Original languageEnglish (US)
Pages (from-to)956-961
Number of pages6
JournalNature nanotechnology
Volume15
Issue number11
DOIs
StatePublished - Nov 1 2020

Funding

We thank R. Tiberio and U. Raghuram for helpful discussions regarding fabrication. This work was supported by PECASE (grant no. FA9550-15-10006) and NSF EFRI (grant no. 1641109). The device fabrication, performed in part by J.D., was supported by the DOE ‘Photonics at Thermodynamic Limits’ Energy Frontier Research Center under grant no. DE-SC0019140. J.v.d.G, J.-H.S. and M.L.B. acknowledge funding from an individual investigator grant from AFOSR (no. FA9550-18-1-0323). Part of this work was performed at the Stanford Nano Shared Facilities and Stanford Nanofabrication Facilities, which are supported by the National Science Foundation and National Nanotechnology Coordinated Infrastructure under award no. ECCS-1542152.

ASJC Scopus subject areas

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • General Materials Science
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'High quality factor phase gradient metasurfaces'. Together they form a unique fingerprint.

Cite this