Abstract
We report AlGaN-based back-illuminated solar-blind p-i-n photodetectors with a record peak responsivity of 150 mA/W at 280 nm, corresponding to a high external quantum efficiency of 68%, increasing to 74% under 5 volts reverse bias. Through optimization of the p-AlGaN layer, we were able to remove the out-of-band negative photoresponse originating from the Schottky-like p-type metal contact, and hence significantly improve the degree of solar-blindness. We attribute the high efficiency of these devices to the use of very-high quality AlN and Al0.87Ga0.13N/AlN superlattice material, a highly conductive Si-In co-doped Al0.5Ga0.5N layer, and the elimination of the negative photoresponse through improvement of the p-type AlGaN.
Original language | English (US) |
---|---|
Pages (from-to) | 434-444 |
Number of pages | 11 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5359 |
DOIs | |
State | Published - 2004 |
Event | Quantum Sensing and Nanophotonic Devices - San Jose, CA, United States Duration: Jan 25 2004 → Jan 29 2004 |
Keywords
- AlGaN
- Back-Illuminated
- Photodetector
- Solar Blind
- Ultraviolet
- p-i-n
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Applied Mathematics
- Electrical and Electronic Engineering
- Computer Science Applications