High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals

Yihui He, Liviu Matei, Hee Joon Jung, Kyle M. McCall, Michelle Chen, Konstantinos Stoumpos, Zhifu Liu, John A. Peters, Duck Young Chung, Bruce W. Wessels, Michael R. Wasielewski, Vinayak P. Dravid, Arnold Burger, Mercouri G. Kanatzidis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

327 Scopus citations


Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materials in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10-3 cm2 V-1) derives mainly from the record long hole carrier lifetime (over 25 μs). The easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.

Original languageEnglish (US)
Article number1609
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals'. Together they form a unique fingerprint.

Cite this