High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe

John Androulakis*, Duck Young Chung, Xianli Su, Li Zhang, Ctirad Uher, Thomas C. Hasapis, Euripides Hatzikraniotis, Konstantinos M. Paraskevopoulos, Mercouri G. Kanatzidis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


We present a detailed study of the charge transport, infrared optical reflectivity, and thermal transport properties of n-type PbSe crystals. A strong scattering, mobility-limiting mechanism was revealed to be at play at temperatures above 500 K. The mechanism is indicative of complex electron-phonon interactions that cannot be explained by conventional acoustic phonon scattering alone. We applied the first-order nonparabolicity approximation to extract the density-of-states effective mass as a function of doping both at room temperature and at 700 K. The results are compared to those of a parabolic band model and in light of doping-dependent studies of the infrared optical reflectivity. The thermal conductivity behavior as a function of temperature shows a strong deviation from the expected Debye-Peierls high-temperature behavior (umklapp dominated) indicating an additional heat-carrying channel, which we associate with optical phonon excitations. The correlation of the thermal conductivity observations to the high-temperature carrier mobility behavior is discussed. The thermoelectric figure of merit exhibits a promising value of ∼ 0.8 at 700 K at ∼1.5×1019 cm-3.

Original languageEnglish (US)
Article number155207
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number15
StatePublished - Oct 18 2011

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe'. Together they form a unique fingerprint.

Cite this