High thermoelectric effi ciency of n-type PbS

Heng Wang, Eugen Schechtel, Yanzhong Pei, G. Jeffrey Snyder

Research output: Contribution to journalArticlepeer-review

168 Scopus citations

Abstract

PbS shares several features with the other lead chalcogenides PbX (X: Te, Se), which are good thermoelectric materials. PbS has a potential advantage in that it is quite earth abundant and inexpensive. In this work we tune the transport properties in n-type, single-phase polycrystalline PbS 1-xClx(x = 0.008) with different carrier densities. Lead chloride provides a nearly 100% effi cient doping control up to 1.2 × 10 20 cm -3 . The maximum zT achieved at 850 K is 0.7 with a predicted zT -1 at 1000 K. This is about twice as high as what was previously reported ( -0.4) for binary PbS. Compared with the other lead chalcogenides the higher effective mass and higher lattice thermal conductivity makes binary PbS an inferior thermoelectric material. However this study also predicts greater potential of zT improvement in PbS by material engineering such as alloying or nanostructuring compared to PbSe or PbTe. Considering their abundance and low cost, PbS based materials are quite competitive among the lead chalcogenides for thermoelectric applications.

Original languageEnglish (US)
Pages (from-to)488-495
Number of pages8
JournalAdvanced Energy Materials
Volume3
Issue number4
DOIs
StatePublished - Apr 1 2013

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'High thermoelectric effi ciency of n-type PbS'. Together they form a unique fingerprint.

Cite this