Highly directive radiation and negative refraction using photonic crystals

E. Ozbay*, I. Bulu, K. Aydin, H. Caglayan, K. B. Alici, K. Guven

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this article, we present an experimental and numerical study of certain optical properties of two-dimensional dielectric photonic crystals (PCs). By modifying the band structure of a two-dimensional photonic crystal through its crystal parameters, we show how it is possible to confine the angular distribution of radiation from an embedded omnidirectional source. We then demonstrate that the anomalous band dispersions of PCs give rise to completely novel optical phenomena, in particular, the negative refraction of electromagnetic waves at the interface of a PC. We investigate the spectral negative refraction, which utilizes a transverse magnetic (TM)-polarized upper band of a PC, in detail and show that a high degree of isotropy can be achieved for the corresponding effective index of refraction. The presence of nearly a isotropic negative refractive index leads to focusing of omnidirectional sources by a PC slab lens, which can surpass certain limitations of conventional (positive refractive) lenses. These examples indicate the potential of PCs for photonics applications utilizing the band structure.

Original languageEnglish (US)
Pages (from-to)217-224
Number of pages8
JournalLaser Physics
Volume15
Issue number2
StatePublished - Feb 1 2005

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Condensed Matter Physics
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Highly directive radiation and negative refraction using photonic crystals'. Together they form a unique fingerprint.

Cite this