Abstract
Mediation analysis plays a major role in identifying significant mediators in the pathway between environmental exposures and health outcomes. With advanced data collection technology for large-scale studies, there has been growing research interest in developing methodology for high-dimensional mediation analysis. In this paper we present HIMA2, an extension of the HIMA method (Zhang in Bioinformatics 32:3150–3154, 2016). First, the proposed HIMA2 reduces the dimension of mediators to a manageable level based on the sure independence screening (SIS) method (Fan in J R Stat Soc Ser B 70:849–911, 2008). Second, a de-biased Lasso procedure is implemented for estimating regression parameters. Third, we use a multiple-testing procedure to accurately control the false discovery rate (FDR) when testing high-dimensional mediation hypotheses. We demonstrate its practical performance using Monte Carlo simulation studies and apply our method to identify DNA methylation markers which mediate the pathway from smoking to reduced lung function in the Coronary Artery Risk Development in Young Adults (CARDIA) Study.
Original language | English (US) |
---|---|
Article number | 296 |
Journal | BMC bioinformatics |
Volume | 23 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Funding
This research was partly supported by NIH/NIA R21 AG 063370, R21 AG068955, and NIH/NCATS UL1 TR002345. The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). This manuscript has been reviewed by CARDIA for scientific content. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Keywords
- Causality
- Epigenetics
- Joint significant test
- Variable selection
ASJC Scopus subject areas
- Structural Biology
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Applied Mathematics