Homer1 promotes dendritic spine growth through ankyrin-G and its loss reshapes the synaptic proteome

Sehyoun Yoon, Nicolas H. Piguel, Natalia Khalatyan, Leonardo E. Dionisio, Jeffrey N. Savas, Peter Penzes*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Homer1 is a synaptic scaffold protein that regulates glutamatergic synapses and spine morphogenesis. HOMER1 knockout (KO) mice show behavioral abnormalities related to psychiatric disorders, and HOMER1 has been associated with psychiatric disorders such as addiction, autism disorder (ASD), schizophrenia (SZ), and depression. However, the mechanisms by which it promotes spine stability and its global function in maintaining the synaptic proteome has not yet been fully investigated. Here, we used computational approaches to identify global functions for proteins containing the Homer1-interacting PPXXF motif within the postsynaptic compartment. Ankyrin-G was one of the most topologically important nodes in the postsynaptic peripheral membrane subnetwork, and we show that one of the PPXXF motifs, present in the postsynaptically-enriched 190 kDa isoform of ankyrin-G (ankyrin-G 190), is recognized by the EVH1 domain of Homer1. We use proximity ligation combined with super-resolution microscopy to map the interaction of ankyrin-G and Homer1 to distinct nanodomains within the spine head and correlate them with spine head size. This interaction motif is critical for ankyrin-G 190’s ability to increase spine head size, and for the maintenance of a stable ankyrin-G pool in spines. Intriguingly, lack of Homer1 significantly upregulated the abundance of ankyrin-G, but downregulated Shank3 in cortical crude plasma membrane fractions. In addition, proteomic analysis of the cortex in HOMER1 KO and wild-type (WT) mice revealed a global reshaping of the postsynaptic proteome, surprisingly characterized by extensive upregulation of synaptic proteins. Taken together, we show that Homer1 and its protein interaction motif have broad global functions within synaptic protein-protein interaction networks. Enrichment of disease risk factors within these networks has important implications for neurodevelopmental disorders including bipolar disorder, ASD, and SZ.

Original languageEnglish (US)
Pages (from-to)1775-1789
Number of pages15
JournalMolecular Psychiatry
Issue number6
StatePublished - Jun 2021

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • Cellular and Molecular Neuroscience
  • Molecular Biology


Dive into the research topics of 'Homer1 promotes dendritic spine growth through ankyrin-G and its loss reshapes the synaptic proteome'. Together they form a unique fingerprint.

Cite this