Homoclinic points for convex billiards

Zhihong Xia, Pengfei Zhang

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

In this paper we investigate some generic properties of a billiard system on a convex table. We show that C generically, every hyperbolic periodic point admits some homoclinic orbit.

Original languageEnglish (US)
Pages (from-to)1181-1192
Number of pages12
JournalNonlinearity
Volume27
Issue number6
DOIs
StatePublished - Jan 1 2014

Fingerprint

Homoclinic Point
Generic Property
Homoclinic Orbit
Periodic Points
Billiards
Table
Orbits
orbits

Keywords

  • Moser stable
  • convex billiards
  • generic properties
  • heteroclinic connection
  • homoclinic point
  • prime ends

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

Cite this

Xia, Zhihong ; Zhang, Pengfei. / Homoclinic points for convex billiards. In: Nonlinearity. 2014 ; Vol. 27, No. 6. pp. 1181-1192.
@article{7c914bdc265e49b58724ab01ec2ee1f9,
title = "Homoclinic points for convex billiards",
abstract = "In this paper we investigate some generic properties of a billiard system on a convex table. We show that C∞ generically, every hyperbolic periodic point admits some homoclinic orbit.",
keywords = "Moser stable, convex billiards, generic properties, heteroclinic connection, homoclinic point, prime ends",
author = "Zhihong Xia and Pengfei Zhang",
year = "2014",
month = "1",
day = "1",
doi = "10.1088/0951-7715/27/6/1181",
language = "English (US)",
volume = "27",
pages = "1181--1192",
journal = "Nonlinearity",
issn = "0951-7715",
publisher = "IOP Publishing Ltd.",
number = "6",

}

Homoclinic points for convex billiards. / Xia, Zhihong; Zhang, Pengfei.

In: Nonlinearity, Vol. 27, No. 6, 01.01.2014, p. 1181-1192.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Homoclinic points for convex billiards

AU - Xia, Zhihong

AU - Zhang, Pengfei

PY - 2014/1/1

Y1 - 2014/1/1

N2 - In this paper we investigate some generic properties of a billiard system on a convex table. We show that C∞ generically, every hyperbolic periodic point admits some homoclinic orbit.

AB - In this paper we investigate some generic properties of a billiard system on a convex table. We show that C∞ generically, every hyperbolic periodic point admits some homoclinic orbit.

KW - Moser stable

KW - convex billiards

KW - generic properties

KW - heteroclinic connection

KW - homoclinic point

KW - prime ends

UR - http://www.scopus.com/inward/record.url?scp=84901660709&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901660709&partnerID=8YFLogxK

U2 - 10.1088/0951-7715/27/6/1181

DO - 10.1088/0951-7715/27/6/1181

M3 - Article

AN - SCOPUS:84901660709

VL - 27

SP - 1181

EP - 1192

JO - Nonlinearity

JF - Nonlinearity

SN - 0951-7715

IS - 6

ER -