Human kidney stones: a natural record of universal biomineralization

Mayandi Sivaguru*, Jessica J. Saw, Elena M. Wilson, John C. Lieske, Amy E. Krambeck, James C. Williams, Michael F. Romero, Kyle W. Fouke, Matthew W. Curtis, Jamie L. Kear-Scott, Nicholas Chia, Bruce W. Fouke

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

6 Scopus citations

Abstract

GeoBioMed — a new transdisciplinary approach that integrates the fields of geology, biology and medicine — reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.

Original languageEnglish (US)
Pages (from-to)404-432
Number of pages29
JournalNature Reviews Urology
Volume18
Issue number7
DOIs
StatePublished - Jul 2021
Externally publishedYes

ASJC Scopus subject areas

  • Urology

Fingerprint

Dive into the research topics of 'Human kidney stones: a natural record of universal biomineralization'. Together they form a unique fingerprint.

Cite this