Hydroxyapatite coatings produced by right angle magnetron sputtering for biomedical applications

Zhendong Hong*, Alexandre Mello, Tomohiko Yoshida, Lan Luan, Paula H. Stern, Alexandre Rossi, Donald E. Ellis, John B. Ketterson

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Hydroxyapatite coatings have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered coatings are usually non-stoichiometric and amorphous which can cause some serious problems such as poor adhesion and excessive coating dissolution rate. A versatile right-angle radio frequency magnetron sputtering (RAMS) approach has been developed to deposit HA coatings on various substrates at low power levels. Using this alternative magnetron geometry, as-sputtered HA coatings are nearly stoichiometric, highly crystalline, and strongly bound to the substrate, as evidenced by analyses using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). In particular, coatings deposited on oriented substrates show a polycrystalline XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. Post deposition heat treatment under high temperature does not result in a marked improvement in the degree of crystallinity of the coatings. To study the biocompatibility of these coatings, munne osteoblast cells were seeded onto various substrates. Cell density counts using fluorescence microscopy show that the best osteoblast proliferation is achieved on an HA RAMS-coated titanium substrate. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications. copyright

Original languageEnglish (US)
Title of host publicationMaterials Research Society Symposium Proceedings - Nature of Design-Utilizing Biology's Portfolio
Pages73-79
Number of pages7
StatePublished - Dec 1 2007
EventNature of Design-Utilizing Biology's Portfolio - 2007 MRS Spring Meeting - San Francisco, CA, United States
Duration: Apr 9 2007Apr 13 2007

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1008
ISSN (Print)0272-9172

Other

OtherNature of Design-Utilizing Biology's Portfolio - 2007 MRS Spring Meeting
Country/TerritoryUnited States
CitySan Francisco, CA
Period4/9/074/13/07

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Hydroxyapatite coatings produced by right angle magnetron sputtering for biomedical applications'. Together they form a unique fingerprint.

Cite this