Hypoxic conformance of metabolism in primary rat hepatocytes: A model of hepatic hibernation

Ram M. Subramanian*, Navdeep Chandel, G. R. Scott Budinger, Paul T. Schumacker

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Following prolonged hypoxia, mammalian cells invoke adaptive mechanisms to enhance oxygen delivery and promote energy conservation. We previously reported that hepatocytes subjected to prolonged moderate hypoxia (PO2 = 20-50 mmHg for > 3 hours) demonstrated a reversible inhibition of cellular respiration with maintenance of cell viability, associated with a decrease in mitochondrial adenosine triphosphate (ATP) synthesis; acute hypoxia (similar PO2 for <30 minutes) did not induce a similar suppression of respiration and ATP synthesis. In the current study, using an in vitro model of primary rat hepatocytes, we measured the changes in metabolic demand for ATP during hypoxic conformance, and tested whether viability is maintained by preferentially suppressing nonessential processes while sustaining processes essential for maintaining cell homeostasis. In addition, the rate of recovery of oxygen consumption and ATP concentrations following reoxygenation after prolonged and acute hypoxia/anoxia was compared. Oxygen consumption and ATP concentrations decreased during prolonged hypoxia compared with acute hypoxia. However, ouabain-inhibitable respiration did not decrease during prolonged hypoxia, indicating that membrane Na+/K+ ATPase activity, an essential process for cell viability, was maintained. In contrast, ATP-dependent glucuronidation and sulfation of acetaminophen, deemed "non-essential" processes, were decreased significantly compared with normoxic cells. After reoxygenation, cells exposed to prolonged moderate hypoxia demonstrated a more rapid recovery of respiration compared to acute hypoxia/anoxia. Conclusion: This "hepatic hibernation" during prolonged moderate hypoxia may represent an anticipatory adaptation that seeks to maintain cell viability while delaying or preventing the onset of lethal hypoxia, and facilitates rapid recovery after the resumption of normoxia.

Original languageEnglish (US)
Pages (from-to)455-464
Number of pages10
Issue number2
StatePublished - Feb 2007

ASJC Scopus subject areas

  • Hepatology


Dive into the research topics of 'Hypoxic conformance of metabolism in primary rat hepatocytes: A model of hepatic hibernation'. Together they form a unique fingerprint.

Cite this