Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex

Erling Thyrhaug, Roel Tempelaar, Marcelo J.P. Alcocer, Karel Žídek, David Bína, Jasper Knoester, Thomas L.C. Jansen, Donatas Zigmantas*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

171 Scopus citations


The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna-Matthews-Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore-environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer.

Original languageEnglish (US)
Pages (from-to)780-786
Number of pages7
JournalNature chemistry
Issue number7
StatePublished - Jul 1 2018

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Chemistry


Dive into the research topics of 'Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex'. Together they form a unique fingerprint.

Cite this