Abstract
During cellular specification, transcription factors orchestrate cellular decisions through gene regulation. By hijacking these transcriptional networks, human pluripotent stem cells (hPSCs) can be specialized into neurons with different molecular identities for the purposes of regenerative medicine and disease modeling. However, molecular fine tuning cell types to match their in vivo counterparts remains a challenge. Directing cell fates often result in blended or incomplete neuron identities. A better understanding of hPSC to neuron gene regulation is needed. Here, we used single cell RNA sequencing to resolve some of these graded molecular identities during human neurogenesis from hPSCs. Differentiation platforms were established to model neural induction from stem cells, and we characterized these differentiated cell types by 10x single cell RNA sequencing. Using single cell trajectory and co-expression analyses, we identified a co-regulated transcription factor module expressing achaete-scute family basic helix-loop-helix transcription factor 1 (ASCL1) and neuronal differentiation 1 (NEUROD1). We then tested the function of these transcription factors in neuron subtype differentiation by gene knockout in a novel human system that reports the expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis. ASCL1 was identified as a necessary transcription factor for regulating dopaminergic neurotransmitter selection.
Original language | English (US) |
---|---|
Article number | 22257 |
Journal | Scientific reports |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Funding
This study was supported by NIH R01NS096240; Northwestern University—Flow Cytometry Core Facility supported by Cancer Center Support Grant (NCI CA060553); Flow Cytometry Cell Sorting was performed on a BD FACSAria SORP system and BD FACSymphony S6 SORP system, purchased through the support of NIH 1S10OD011996-01 and 1S10OD026814-01. We acknowledge the NUSeq Core at Northwestern University Fein-berg School of Medicine for performance of single cell RNA sequencing, which is made available with an NIH Shared Instrumentation Grant (1S10OD025120).
ASJC Scopus subject areas
- General