Identifying connectivity patterns for brain diseases via multi-side-view guided deep architectures

Jingyuan Zhang, Bokai Cao, Sihong Xie, Chun Ta Lu, Philip S. Yu, Ann B. Ragin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

There is considerable interest in mining neuroimage data to discover clinically meaningful connectivity patterns to inform an understanding of neurological and neuropsychiatrie disorders. Subgraph mining models have been used to discover connected subgraph patterns. However, it is difficult to capture the complicated interplay among patterns. As a result, classification performance based on these results may not be satisfactory. To address this issue, we propose to learn non-linear representations of brain connectivity patterns from deep learning architectures. This is non-trivial, due to the limited subjects and the high costs of acquiring the data. Fortunately, auxiliary information from multiple side views such as clinical, serologic, immunologic, cognitive and other diagnostic testing also characterizes the states of subjects from different perspectives. In this paper, we present a novel Multi-side-View guided AutoEncoder (MVAE) that incorporates multiple side views into the process of deep learning to tackle the bias in the construction of connectivity patterns caused by the scarce clinical data. Extensive experiments show that MVAE not only captures discriminative connectivity patterns for classification, but also discovers meaningful information for clinical interpretation.

Original languageEnglish (US)
Title of host publication16th SIAM International Conference on Data Mining 2016, SDM 2016
EditorsSanjay Chawla Venkatasubramanian, Wagner Meira
PublisherSociety for Industrial and Applied Mathematics Publications
Pages36-44
Number of pages9
ISBN (Electronic)9781510828117
StatePublished - 2016
Event16th SIAM International Conference on Data Mining 2016, SDM 2016 - Miami, United States
Duration: May 5 2016May 7 2016

Publication series

Name16th SIAM International Conference on Data Mining 2016, SDM 2016

Other

Other16th SIAM International Conference on Data Mining 2016, SDM 2016
CountryUnited States
CityMiami
Period5/5/165/7/16

ASJC Scopus subject areas

  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'Identifying connectivity patterns for brain diseases via multi-side-view guided deep architectures'. Together they form a unique fingerprint.

Cite this