Identifying early changes in myocardial microstructure in hypertensive heart disease

Pranoti Hiremath, Michael Bauer, Aaron D. Aguirre, Hui Wen Cheng, Kazumasa Unno, Ravi B. Patel, Bethany W. Harvey, Wei Ting Chang, John D. Groarke, Ronglih Liao, Susan Cheng

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The transition from healthy myocardium to hypertensive heart disease is characterized by a series of poorly understood changes in myocardial tissue microstructure. Incremental alterations in the orientation and integrity of myocardial fibers can be assessed using advanced ultrasonic image analysis. We used a modified algorithm to investigate left ventricular myocardial microstructure based on analysis of the reflection intensity at the myocardial-pericardial interface on B-mode echocardiographic images. We evaluated the extent to which the novel algorithm can differentiate between normal myocardium and hypertensive heart disease in humans as well as in a mouse model of afterload resistance. The algorithm significantly differentiated between individuals with uncomplicated essential hypertension (N = 30) and healthy controls (N = 28), even after adjusting for age and sex (P = 0.025). There was a trend in higher relative wall thickness in hypertensive individuals compared to controls (P = 0.08), but no difference between groups in left ventricular mass (P = 0.98) or total wall thickness (P = 0.37). In mice, algorithm measurements (P = 0.026) compared with left ventricular mass (P = 0.053) more clearly differentiated between animal groups that underwent fixed aortic banding, temporary aortic banding, or sham procedure, on echocardiography at 7 weeks after surgery. Based on sonographic signal intensity analysis, a novel imaging algorithm provides an accessible, non-invasive measure that appears to differentiate normal left ventricular microstructure from myocardium exposed to chronic afterload stress. The algorithm may represent a particularly sensitive measure of the myocardial changes that occur early in the course of disease progression.

Original languageEnglish (US)
Article numbere97424
JournalPloS one
Volume9
Issue number5
DOIs
StatePublished - May 15 2014
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Identifying early changes in myocardial microstructure in hypertensive heart disease'. Together they form a unique fingerprint.

Cite this