Abstract
Acute myeloid leukemia (AML) patients often undergo allogeneic hematopoietic cell transplantation (alloHCT) in first complete remission (CR). We examined the effect of depth of clinical response, including incomplete count recovery (CRi) and/or measurable residual disease (MRD), in patients from the Center for International Blood and Marrow Transplantation Research (CIBMTR) registry. We identified 2492 adult patients (1799 CR and 693 CRi) who underwent alloHCT between January 1, 2007 and December 31, 2015. The primary outcome was overall survival (OS). Multivariable analysis was performed to adjust for patient-, disease-, and transplant-related factors. Baseline characteristics were similar. Patients in CRi compared to those in CR had an increased likelihood of death (HR: 1.27; 95% confidence interval: 1.13–1.43). Compared to CR, CRi was significantly associated with increased non-relapse mortality (NRM), shorter disease-free survival (DFS), and a trend toward increased relapse. Detectable MRD was associated with shorter OS, shorter DFS, higher NRM, and increased relapse compared to absence of MRD. The deleterious effects of CRi and MRD were independent. In this large CIBMTR cohort, survival outcomes differ among AML patients based on depth of CR and presence of MRD at the time of alloHCT. Further studies should focus on optimizing post-alloHCT outcomes for patients with responses less than CR.
Original language | English (US) |
---|---|
Pages (from-to) | 2108-2117 |
Number of pages | 10 |
Journal | Bone Marrow Transplantation |
Volume | 56 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2021 |
Funding
Acknowledgements The CIBMTR is supported primarily by Public Health Service U24CA076518 from the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI) and the National Institute of Allergy and Infectious Diseases (NIAID); U24HL138660 from NHLBI and NCI; OT3HL147741 and U01HL128568 from the NHLBI; HHSH250201700006C and HHSH250201700007C from the Health Resources and Services Administration (HRSA); and N00014-20-1-2705 and N00014-20-1-2832 from the Office of Naval Research; Additional federal support is provided by P01CA111412, R01CA152108, R01CA215134, R01CA218285, R01CA231141, R01AI128775, R01HL126589, R01HL129472, R01HL130388, R01HL131731, U01AI069197, U01AI126612, UG1HL06924, and BARDA. Support is also provided by Be the Match Foundation, Boston Children’s Hospital, Dana Far-ber, St. Baldrick’s Foundation, Stanford University, the Medical College of Wisconsin the National Marrow Donor Program, and from the following commercial entities: Actinium Pharmaceuticals, Inc.; Adienne SA; Allovir, Inc.; Amgen, Inc.; Angiocrine Bioscience; Astellas Pharma US; bluebird bio, Inc.; Bristol Myers Squibb Co.; Celgene Corp.; CSL Behring; CytoSen Therapeutics, Inc.; Daiichi Sankyo Co., Ltd.; ExcellThera; Fate Therapeutics; Gamida-Cell, Ltd.; Genentech Inc; Incyte Corporation; Janssen/Johnson & Johnson; Jazz Pharmaceuticals, Inc.; Kiadis Pharma; Kite, a Gilead Company; Kyowa Kirin; Legend Biotech; Magenta Therapeutics; Merck Sharp & Dohme Corp.; Millennium, the Takeda Oncology Co.; Miltenyi Bio-tec, Inc.; Novartis Pharmaceuticals Corporation; Omeros Corporation; Oncoimmune, Inc.; Orca Biosystems, Inc.; Pfizer, Inc.; Pharmacyclics, LLC; Sanofi Genzyme; Stemcyte; Takeda Pharma; Vor Biopharma; Xenikos BV. The views expressed in this article do not reflect the official policy or position of the National Institute of Health, the Department of the Navy, the Department of Defense, Health Resources and Services Administration (HRSA) or any other agency of the US Government.
ASJC Scopus subject areas
- Hematology
- Transplantation