Importance of k-space trajectory in echo-planar myocardial tagging at rest and during dobutamine stress

Daniel Kim, Christina M. Bove, Christopher M. Kramer, Frederick H. Epstein*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Hybrid fast gradient echo/echo-planar imaging (FGRE-EPI) can be used to increase temporal resolution, enhance tag contrast, and/or decrease scan time for breathhold myocardial tagging. However, off-resonance effects and motion can lead to local phase discontinuities in FGRE-EPI raw data when a conventional interleaved bottom-up k-space trajectory is used. These discontinuities can be particularly problematic for myocardial tagging, where the image energy is not only concentrated near the k-space origin, but is also concentrated in multiple spectral peaks centered throughout k-space. In this study, tag distortion artifacts in FGRE-EPI tagging due to off-resonance and velocity-induced phase discontinuities were characterized at rest and dobutamine stress, and the flyback and gradient moment smoothing (GMS) methods were shown to reduce these artifacts. For the specific parameters used in this study, flyback and GMS resulted in improved image quality at rest and stress, increased myocardium-tag contrast-to- noise ratio (11.4 ± 2.1 vs. 10.0 ± 2.9, P < 0.01 at rest; 11.1 ± 1.8 vs. 8.1 ± 2.4, P < 0.01 at stress), and reduced full width at half maximum of the tag profile (3.6 vs. 3.8 pixels at rest; 4.0 vs. 5.1 pixels at stress) compared to the conventional trajectory. A limitation of the improved trajectory is a parameter-dependent decrease in data acquisition efficiency. For the specific imaging protocol used, the repetition time of the improved trajectory increased by 36% compared to the conventional trajectory.

Original languageEnglish (US)
Pages (from-to)813-820
Number of pages8
JournalMagnetic resonance in medicine
Volume50
Issue number4
DOIs
StatePublished - Oct 1 2003

Keywords

  • Dobutamine stress
  • Echo-planar imaging
  • MRI
  • Myocardial tagging

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Importance of k-space trajectory in echo-planar myocardial tagging at rest and during dobutamine stress'. Together they form a unique fingerprint.

Cite this