TY - JOUR
T1 - Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models
AU - Corsi, Cristiana
AU - Lamberti, Claudio
AU - Catalano, Oronzo
AU - Maceneaney, Peter
AU - Bardo, Dianna
AU - Lang, Roberto M.
AU - Caiani, Enrico G.
AU - Mor-Avi, Victor
PY - 2005
Y1 - 2005
N2 - Purpose. The reproducibility of left ventricular (LV) volume and mass measurements based on subjective slice-by-slice tracing of LV borders is affected by image quality, and volume estimates are biased by geometric modeling. The authors developed a technique for volumetric surface detection (VoSD) and quantification of LV volumes and mass without tracing and geometric approximations. The authors hypothesized that this technique is accurate and more reproducible than the conventional methodology. Methods. Images were obtained in 24 patients in 6 to 10 slices from LV base to apex (GE 1.5 T, FIESTA). Volumetric data were reconstructed, and endocardial and epicardial surfaces were detected using the level set approach. LV volumes were obtained from voxel counts and used to compute ejection fraction (EF) and mass. Conventional measurements (MASS Analysis) were used as a reference to test the accuracy of VoSD technique (linear regression, Bland-Altman). For both techniques, measurements were repeated to compute inter- and intra-observer variability. Results. VoSD values resulted in high correlation with the reference values (EDV: r = 0.98; ESV: r = 0.99; EF: r = 0.91; mass: r = 0.98), with no significant biases (8 ml, 5 ml, 0.2% and -9 g) and narrow limits of agreement (SD: 13 ml, 10 ml, 6% and 9 g). Inter-observer variability of the VoSD technique was lower (range 3 to 5%) than that of the reference technique (5 to 11%; p < 0.05). Intra-observer variability was also lower (1 to 3% vs. 7 to 10%; p < 0.05). Conclusion. VoSD technique allows accurate measurements of LV volumes, EF, and mass, which are more reproducible than the conventional methodology.
AB - Purpose. The reproducibility of left ventricular (LV) volume and mass measurements based on subjective slice-by-slice tracing of LV borders is affected by image quality, and volume estimates are biased by geometric modeling. The authors developed a technique for volumetric surface detection (VoSD) and quantification of LV volumes and mass without tracing and geometric approximations. The authors hypothesized that this technique is accurate and more reproducible than the conventional methodology. Methods. Images were obtained in 24 patients in 6 to 10 slices from LV base to apex (GE 1.5 T, FIESTA). Volumetric data were reconstructed, and endocardial and epicardial surfaces were detected using the level set approach. LV volumes were obtained from voxel counts and used to compute ejection fraction (EF) and mass. Conventional measurements (MASS Analysis) were used as a reference to test the accuracy of VoSD technique (linear regression, Bland-Altman). For both techniques, measurements were repeated to compute inter- and intra-observer variability. Results. VoSD values resulted in high correlation with the reference values (EDV: r = 0.98; ESV: r = 0.99; EF: r = 0.91; mass: r = 0.98), with no significant biases (8 ml, 5 ml, 0.2% and -9 g) and narrow limits of agreement (SD: 13 ml, 10 ml, 6% and 9 g). Inter-observer variability of the VoSD technique was lower (range 3 to 5%) than that of the reference technique (5 to 11%; p < 0.05). Intra-observer variability was also lower (1 to 3% vs. 7 to 10%; p < 0.05). Conclusion. VoSD technique allows accurate measurements of LV volumes, EF, and mass, which are more reproducible than the conventional methodology.
KW - Computer analysis
KW - Global ventricular function
KW - Magnetic resonance imaging
KW - Ventricular mass
UR - http://www.scopus.com/inward/record.url?scp=20044385076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=20044385076&partnerID=8YFLogxK
U2 - 10.1081/JCMR-200060624
DO - 10.1081/JCMR-200060624
M3 - Article
C2 - 15959973
AN - SCOPUS:20044385076
SN - 1097-6647
VL - 7
SP - 595
EP - 602
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 3
ER -