Improving Content-based Audio Retrieval by Vocal Imitation Feedback

Bongjun Kim, Bryan A Pardo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Content-based audio retrieval including query-by-example (QBE) and query-by-vocal imitation (QBV) is useful when search-relevant text labels for the audio are unavailable, or text labels do not sufficiently narrow the search. However, a single query example may not provide sufficient information to ensure the target sound(s) in the database are the most highly ranked. In this paper, we adapt an existing model for generating audio embeddings to create a state-of-the-art similarity measure for audio QBE and QBV. We then propose a new method to update search results when top-ranked items are not relevant: The user provides an additional vocal imitation to illustrate what they do or do not want in the search results. This imitation may either be of some portion of the initial query example, or of a top-ranked (but incorrect) search result. Results show that adding vocal imitation feedback improves initial retrieval results by a statistically significant amount.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4100-4104
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Keywords

  • Vocal imitation
  • content-based audio retrieval
  • interactive information retrieval
  • relevance feedback

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Improving Content-based Audio Retrieval by Vocal Imitation Feedback'. Together they form a unique fingerprint.

Cite this