Improving data quality across 3 sub-Saharan African countries using the Consolidated Framework for Implementation Research (CFIR): Results from the African Health Initiative

Sarah Gimbel*, Moses Mwanza, Marie Paul Nisingizwe, Cathy Michel, Lisa Hirschhorn, Ahmed Hingora, Dominic Mboya, Amon Exavery, Kassimu Tani, Fatuma Manzi, Senga Pemba, James Phillips, Almamy Malick Kante, Kate Ramsey, Colin Baynes, John Koku Awoonor-Williams, Ayaga Bawah, Belinda Afriyie Nimako, Nicholas Kanlisi, Elizabeth F. JacksonMallory C. Sheff, Pearl Kyei, Patrick O. Asuming, Adriana Biney, Roma Chilengi, Helen Ayles, Cindy Chirwa, Jeffrey Stringer, Mary Mulenga, Dennis Musatwe, Masoso Chisala, Michael Lemba, Wilbroad Mutale, Peter Drobac, Felix Cyamatare Rwabukwisi, Lisa R. Hirschhorn, Agnes Binagwaho, Neil Gupta, Fulgence Nkikabahizi, Anatole Manzi, Jeanine Condo, Didi Bertrand Farmer, Bethany Hedt-Gauthier, Kenneth Sherr, Fatima Cuembelo, Catherine Michel, Bradley Wagenaar, Catherine Henley, Marina Kariaganis, João Luis Manuel, Manuel Napua, Alusio Pio

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Scopus citations


Background: High-quality data are critical to inform, monitor and manage health programs. Over the seven-year African Health Initiative of the Doris Duke Charitable Foundation, three of the five Population Health Implementation and Training (PHIT) partnership projects in Mozambique, Rwanda, and Zambia introduced strategies to improve the quality and evaluation of routinely-collected data at the primary health care level, and stimulate its use in evidence-based decision-making. Using the Consolidated Framework for Implementation Research (CFIR) as a guide, this paper: 1) describes and categorizes data quality assessment and improvement activities of the projects, and 2) identifies core intervention components and implementation strategy adaptations introduced to improve data quality in each setting. Methods: The CFIR was adapted through a qualitative theme reduction process involving discussions with key informants from each project, who identified two domains and ten constructs most relevant to the study aim of describing and comparing each country's data quality assessment approach and implementation process. Data were collected on each project's data quality improvement strategies, activities implemented, and results via a semi-structured questionnaire with closed and open-ended items administered to health management information systems leads in each country, with complementary data abstraction from project reports. Results: Across the three projects, intervention components that aligned with user priorities and government systems were perceived to be relatively advantageous, and more readily adapted and adopted. Activities that both assessed and improved data quality (including data quality assessments, mentorship and supportive supervision, establishment and/or strengthening of electronic medical record systems), received higher ranking scores from respondents. Conclusion: Our findings suggest that, at a minimum, successful data quality improvement efforts should include routine audits linked to ongoing, on-the-job mentoring at the point of service. This pairing of interventions engages health workers in data collection, cleaning, and analysis of real-world data, and thus provides important skills building with on-site mentoring. The effect of these core components is strengthened by performance review meetings that unify multiple health system levels (provincial, district, facility, and community) to assess data quality, highlight areas of weakness, and plan improvements.

Original languageEnglish (US)
Article number828
JournalBMC health services research
StatePublished - Dec 21 2017


  • Data quality assessment
  • Decision making
  • Health systems research
  • Health systems strengthening
  • Maternal and child health
  • Mozambique
  • Quality improvement
  • Rwanda
  • Zambia

ASJC Scopus subject areas

  • Health Policy


Dive into the research topics of 'Improving data quality across 3 sub-Saharan African countries using the Consolidated Framework for Implementation Research (CFIR): Results from the African Health Initiative'. Together they form a unique fingerprint.

Cite this