In vivo capture and label-free detection of early metastatic cells

Samira M. Azarin, Ji Yi, Robert M. Gower, Brian A. Aguado, Megan E. Sullivan, Ashley G. Goodman, Eric J. Jiang, Shreyas S. Rao, Yinying Ren, Susan L. Tucker, Vadim Backman*, Jacqueline S. Jeruss, Lonnie D. Shea

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

Breast cancer is a leading cause of death for women, with mortality resulting from metastasis. Metastases are often detected once tumour cells affect the function of solid organs, with a high disease burden limiting effective treatment. Here we report a method for the early detection of metastasis using an implanted scaffold to recruit and capture metastatic cells in vivo, which achieves high cell densities and reduces the tumour burden within solid organs 10-fold. Recruitment is associated with infiltration of immune cells, which include Gr1 hi CD11b + cells. We identify metastatic cells in the scaffold through a label-free detection system using inverse spectroscopic optical coherence tomography, which identifies changes to nanoscale tissue architecture associated with the presence of tumour cells. For patients at risk of recurrence, scaffold implantation following completion of primary therapy has the potential to identify metastatic disease at the earliest stage, enabling initiation of therapy while the disease burden is low.

Original languageEnglish (US)
Article number8094
JournalNature communications
Volume6
DOIs
StatePublished - Sep 8 2015

ASJC Scopus subject areas

  • General
  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'In vivo capture and label-free detection of early metastatic cells'. Together they form a unique fingerprint.

Cite this