TY - JOUR
T1 - In-vivo imaging of targeting and modulation of depression-relevant circuitry by transcranial direct current stimulation
T2 - a randomized clinical trial
AU - Jog, Mayank S.
AU - Kim, Elizabeth
AU - Anderson, Cole
AU - Kubicki, Antoni
AU - Kayathi, Rishikesh
AU - Jann, Kay
AU - Yan, Lirong
AU - Leaver, Amber
AU - Hellemann, Gerhard
AU - Iacoboni, Marco
AU - Woods, Roger P.
AU - Wang, Danny J.J.
AU - Narr, Katherine L.
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/6
Y1 - 2021/6
N2 - Recent clinical trials of transcranial direct current stimulation (tDCS) in depression have shown contrasting results. Consequently, we used in-vivo neuroimaging to confirm targeting and modulation of depression-relevant neural circuitry by tDCS. Depressed participants (N = 66, Baseline Hamilton Depression Rating Scale (HDRS) 17-item scores ≥14 and <24) were randomized into Active/Sham and High-definition (HD)/Conventional (Conv) tDCS groups using a double-blind, parallel design, and received tDCS individually targeted at the left dorsolateral prefrontal cortex (DLPFC). In accordance with Ampere’s Law, tDCS currents were hypothesized to induce magnetic fields at the stimulation-target, measured in real-time using dual-echo echo-planar-imaging (DE-EPI) MRI. Additionally, the tDCS treatment trial (consisting of 12 daily 20-min sessions) was hypothesized to induce cerebral blood flow (CBF) changes post-treatment at the DLPFC target and in the reciprocally connected anterior cingulate cortex (ACC), measured using pseudo-continuous arterial spin labeling (pCASL) MRI. Significant tDCS current-induced magnetic fields were observed at the left DLPFC target for both active stimulation montages (Brodmann’s area (BA) 46: pHD = 0.048, Cohen’s dHD = 0.73; pConv = 0.018, dConv = 0.86; BA 9: pHD = 0.011, dHD = 0.92; pConv = 0.022, dConv = 0.83). Significant longitudinal CBF increases were observed (a) at the left DLPFC stimulation-target for both active montages (pHD = 3.5E−3, dHD = 0.98; pConv = 2.8E−3, dConv = 1.08), and (b) at ACC for the HD-montage only (pHD = 2.4E−3, dHD = 1.06; pConv = 0.075, dConv = 0.64). These results confirm that tDCS-treatment (a) engages the stimulation-target, and (b) modulates depression-relevant neural circuitry in depressed participants, with stronger network-modulations induced by the HD-montage. Although not primary outcomes, active HD-tDCS showed significant improvements of anhedonia relative to sham, though HDRS scores did not differ significantly between montages post-treatment.
AB - Recent clinical trials of transcranial direct current stimulation (tDCS) in depression have shown contrasting results. Consequently, we used in-vivo neuroimaging to confirm targeting and modulation of depression-relevant neural circuitry by tDCS. Depressed participants (N = 66, Baseline Hamilton Depression Rating Scale (HDRS) 17-item scores ≥14 and <24) were randomized into Active/Sham and High-definition (HD)/Conventional (Conv) tDCS groups using a double-blind, parallel design, and received tDCS individually targeted at the left dorsolateral prefrontal cortex (DLPFC). In accordance with Ampere’s Law, tDCS currents were hypothesized to induce magnetic fields at the stimulation-target, measured in real-time using dual-echo echo-planar-imaging (DE-EPI) MRI. Additionally, the tDCS treatment trial (consisting of 12 daily 20-min sessions) was hypothesized to induce cerebral blood flow (CBF) changes post-treatment at the DLPFC target and in the reciprocally connected anterior cingulate cortex (ACC), measured using pseudo-continuous arterial spin labeling (pCASL) MRI. Significant tDCS current-induced magnetic fields were observed at the left DLPFC target for both active stimulation montages (Brodmann’s area (BA) 46: pHD = 0.048, Cohen’s dHD = 0.73; pConv = 0.018, dConv = 0.86; BA 9: pHD = 0.011, dHD = 0.92; pConv = 0.022, dConv = 0.83). Significant longitudinal CBF increases were observed (a) at the left DLPFC stimulation-target for both active montages (pHD = 3.5E−3, dHD = 0.98; pConv = 2.8E−3, dConv = 1.08), and (b) at ACC for the HD-montage only (pHD = 2.4E−3, dHD = 1.06; pConv = 0.075, dConv = 0.64). These results confirm that tDCS-treatment (a) engages the stimulation-target, and (b) modulates depression-relevant neural circuitry in depressed participants, with stronger network-modulations induced by the HD-montage. Although not primary outcomes, active HD-tDCS showed significant improvements of anhedonia relative to sham, though HDRS scores did not differ significantly between montages post-treatment.
UR - http://www.scopus.com/inward/record.url?scp=85101737836&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101737836&partnerID=8YFLogxK
U2 - 10.1038/s41398-021-01264-3
DO - 10.1038/s41398-021-01264-3
M3 - Article
C2 - 33627624
AN - SCOPUS:85101737836
SN - 2158-3188
VL - 11
JO - Translational psychiatry
JF - Translational psychiatry
IS - 1
M1 - 138
ER -