Incongruence between transcriptional and vascular pathophysiological cell states

Macarena Fernández-Chacón, Severin Mühleder, Alvaro Regano, Lourdes Garcia-Ortega, Susana F. Rocha, Carlos Torroja, Maria S. Sanchez-Muñoz, Mariya Lytvyn, Verónica Casquero-Garcia, Macarena De Andrés-Laguillo, Lars Muhl, Michael M. Orlich, Konstantin Gaengel, Emilio Camafeita, Jesús Vázquez, Alberto Benguría, M. Luisa Iruela-Arispe, Ana Dopazo, Fátima Sánchez-Cabo, Hannah CarterRui Benedito*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.

Original languageEnglish (US)
Pages (from-to)530-549
Number of pages20
JournalNature Cardiovascular Research
Volume2
Issue number6
DOIs
StatePublished - Jun 2023

Funding

Research in R.B.’s laboratory was supported by the European Research Council Starting Grant AngioGenesHD (638028) and Consolidator Grant AngioUnrestUHD (101001814), the CNIC Intramural Grant Program Severo Ochoa (11-2016-IGP-SEV-2015-0505), the Ministerio de Ciencia e Innovación (MCIN) (SAF2013-44329-P, RYC-2013-13209, and SAF2017-89299-P) and ‘La Caixa’ Banking Foundation (HR19-00120). J.V.’s laboratory was supported by MCIN (PGC2018-097019-B-I00 and PID2021-122348NB-I00) and La Caixa (HR17-00247 and HR22-00253). K.G.’s laboratory was supported by Knut and Alice Wallenberg Foundation (2020.0057) and Vetenskapsrådet (2021-04896). The CNIC is supported by Instituto de Salud Carlos III, MCIN, and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MCIN/AEI/10.13039/501100011033). Microscopy experiments were performed at the Microscopy and Dynamic Imaging Unit, CNIC, ICTS-ReDib, co-funded by MCIN/AEI/10.13039/501100011033 and FEDER ‘Una manera de hacer Europa’ (ICTS-2018-04-CNIC-16). M.F.-C. was supported by PhD fellowships from La Caixa (CX_E-2015-01) and Boehringer Ingelheim travel grants. S.M. was supported by the Austrian Science Fund (J4358). A.R. was supported by the Youth Employment Initiative (PEJD-2019-PRE/BMD-16990). L.G.-O. was supported by the Spanish Ministry of Economy and Competitiveness (PRE2018-085283). We thank S. Bartlett (CNIC) for English editing, as well as the members of the Transgenesis, Microscopy, Genomics, Citometry and Bioinformatic units at CNIC. We also thank F. Radtke (Swiss Institute for Experimental Cancer Research), R. H. Adams (Max Planck Institute for Molecular Biomedicine), F. Alt (Boston Children’s Hospital, Harvard Medical School), T. Honjo (Kyoto University Institute for Advanced Studies), I. Flores (CNIC), J. Lewis (Cancer Research UK London Research Institute), S. Habu (Tokai University School of Medicine), T. Gridley (Maine Health Institute for Research) and C. Brakebusch (Biotech Research and Innovation Centre) for sharing the Dll4, Notch1, Notch2, Cdh5(PAC)-creERT2, Myc, Rbpj, p21, Jag1, Dll1, Jag2 and Rac1 mice. floxed floxed floxed floxed floxed −/− floxed floxed floxed floxed Research in R.B.’s laboratory was supported by the European Research Council Starting Grant AngioGenesHD (638028) and Consolidator Grant AngioUnrestUHD (101001814), the CNIC Intramural Grant Program Severo Ochoa (11-2016-IGP-SEV-2015-0505), the Ministerio de Ciencia e Innovación (MCIN) (SAF2013-44329-P, RYC-2013-13209, and SAF2017-89299-P) and ‘La Caixa’ Banking Foundation (HR19-00120). J.V.’s laboratory was supported by MCIN (PGC2018-097019-B-I00 and PID2021-122348NB-I00) and La Caixa (HR17-00247 and HR22-00253). K.G.’s laboratory was supported by Knut and Alice Wallenberg Foundation (2020.0057) and Vetenskapsrådet (2021-04896). The CNIC is supported by Instituto de Salud Carlos III, MCIN, and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MCIN/AEI/10.13039/501100011033). Microscopy experiments were performed at the Microscopy and Dynamic Imaging Unit, CNIC, ICTS-ReDib, co-funded by MCIN/AEI/10.13039/501100011033 and FEDER ‘Una manera de hacer Europa’ (ICTS-2018-04-CNIC-16). M.F.-C. was supported by PhD fellowships from La Caixa (CX_E-2015-01) and Boehringer Ingelheim travel grants. S.M. was supported by the Austrian Science Fund (J4358). A.R. was supported by the Youth Employment Initiative (PEJD-2019-PRE/BMD-16990). L.G.-O. was supported by the Spanish Ministry of Economy and Competitiveness (PRE2018-085283). We thank S. Bartlett (CNIC) for English editing, as well as the members of the Transgenesis, Microscopy, Genomics, Citometry and Bioinformatic units at CNIC. We also thank F. Radtke (Swiss Institute for Experimental Cancer Research), R. H. Adams (Max Planck Institute for Molecular Biomedicine), F. Alt (Boston Children’s Hospital, Harvard Medical School), T. Honjo (Kyoto University Institute for Advanced Studies), I. Flores (CNIC), J. Lewis (Cancer Research UK London Research Institute), S. Habu (Tokai University School of Medicine), T. Gridley (Maine Health Institute for Research) and C. Brakebusch (Biotech Research and Innovation Centre) for sharing the Dll4floxed, Notch1floxed, Notch2floxed, Cdh5(PAC)-creERT2, Mycfloxed, Rbpjfloxed, p21−/−, Jag1floxed, Dll1floxed, Jag2floxedand Rac1floxedmice.

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Cell Biology
  • Medicine (miscellaneous)
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Incongruence between transcriptional and vascular pathophysiological cell states'. Together they form a unique fingerprint.

Cite this