Increased cell efficiency in InGaAs thin film solar cells with dielectric and metal back reflectors

Koray Aydin*, Marina S. Leite, Harry A. Atwater

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Compound single junction and multijunction solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap materials in series-connected tandem cells to access the full solar spectrum. Researchers focused on improving the electrical properties of solar cells by optimizing the material growth conditions, however relatively little work to date has been devoted to light trapping and enhanced absorption in III-V compound solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film solar cells by means of numerical modeling. Flat dielectric and metal back reflectors that might be introduced into the solar cell via wafer-bonding, epitaxial lift-off or deposition techniques have been shown to increase the short circuit current and the photovoltaic efficiency of solar cells.

Original languageEnglish (US)
Title of host publication2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
Pages1713-1717
Number of pages5
DOIs
StatePublished - 2009
Event2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States
Duration: Jun 7 2009Jun 12 2009

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371

Other

Other2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
Country/TerritoryUnited States
CityPhiladelphia, PA
Period6/7/096/12/09

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Increased cell efficiency in InGaAs thin film solar cells with dielectric and metal back reflectors'. Together they form a unique fingerprint.

Cite this