Increased microbiome diversity at the time of infection is associated with improved growth rates of pigs after co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2)

Rebecca A. Ober, James B. Thissen, Crystal J. Jaing, Ada G. Cino-Ozuna, Raymond R.R. Rowland, Megan C. Niederwerder*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most important pathogens affecting the swine industry worldwide. Co-infections are common on a global scale, resulting in pork production losses through reducing weight gain and causing respiratory disease in growing pigs. Our initial work demonstrated that the fecal microbiome was associated with clinical outcome of pigs 70 days post-infection (dpi) with PRRSV and PCV2. However, it remained uncertain if microbiome characteristics could predispose response to viral infection. The purpose of this study was to determine if microbiome characteristics present at the time of virus exposure were associated with outcome after co-infection. Using the Lawrence Livermore Microbial Detection Array, we profiled the microbiome in feces prior to infection from pigs identified retrospectively as having high or low growth rates after co-infection. High growth rate pigs had less severe interstitial pneumonia, reduced virus replication, and a significant increase in average daily weight gain throughout the study. At the level of the fecal microbiome, high growth rate pigs had increased microbial diversity on both a family and species level. Shifts in the microbiome composition of high growth rate pigs included reduced Methanobacteriaceae species, increased Ruminococcaceae species, and increased Streptococcaceae species when compared to low growth rate pigs. The results indicate that both microbiome diversity and composition at the time of virus exposure may play a role in the subsequent response of pigs to PRRSV/PCV2 co-infection.

Original languageEnglish (US)
Pages (from-to)203-211
Number of pages9
JournalVeterinary Microbiology
Volume208
DOIs
StatePublished - Sep 2017
Externally publishedYes

Keywords

  • Microbial diversity
  • Microbiome
  • Porcine circovirus type 2
  • Porcine reproductive and respiratory syndrome virus
  • Swine
  • Weight gain

ASJC Scopus subject areas

  • General Veterinary
  • Microbiology

Fingerprint

Dive into the research topics of 'Increased microbiome diversity at the time of infection is associated with improved growth rates of pigs after co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2)'. Together they form a unique fingerprint.

Cite this