TY - JOUR
T1 - Indacenodithiazole-Ladder-Type Bridged Di(thiophene)-Difluoro-Benzothiadiazole-Conjugated Copolymers as Ambipolar Organic Field-Effect Transistors
AU - Barłóg, Maciej
AU - Zhang, Xianhe
AU - Kulai, Ihor
AU - Yang, Da Seul
AU - Sredojevic, Dusan N.
AU - Sil, Aritra
AU - Ji, Xiaozhou
AU - Salih, Kifah S.M.
AU - Bazzi, Hassan S.
AU - Bronstein, Hugo
AU - Fang, Lei
AU - Kim, Jinsang
AU - Marks, Tobin J.
AU - Guo, Xugang
AU - Al-Hashimi, Mohammed
N1 - Publisher Copyright:
Copyright © 2019 American Chemical Society.
PY - 2019/11/26
Y1 - 2019/11/26
N2 - A series of four donor-acceptor conjugated copolymers P1-P4 with linear and branched side chains based on a ladder-type indacenodithiazole (IDTz) moiety containing an electron-deficient thiazole unit are copolymerized with di-2-thienyl-2,1,3-benzothiadiazole (DTBT) and 4,7-di(thien-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (DTBTff) as building blocks. Their optical, electrochemical, and thermal properties and charge transport behavior in organic field-effect transistors (OFETs) are studied. All copolymers exhibit nearly identical features in solution with good solubility. In the solid state, P1 does not exhibit a significant shift, while P3 shows a 27 nm red shift, thus illustrating the influence of the side chain. In the case of copolymers P1 and P2 having linear side chains, there is a clear effect of fluorination on the film morphology, while it is less pronounced in the case of polymers P3 and P4 having branched side chains. All copolymers P1-P4 have similar highest occupied molecular orbitals regardless of fluorination, while fluorinated polymers P2 and P4 result in an increase in the lowest unoccupied molecular orbital. In addition, density functional theory calculations reveal that the energy levels of IDTz are down-shifted in comparison to its IDT counterpart containing an electron-rich thiophene unit. OFETs based on all copolymers exhibit ambipolar behavior; among the four copolymers, P2 having a linear dodecyl side chain exhibits remarkable transport properties with saturated hole mobility as high as 0.87 cm2 V-1 s-1, while P3 exhibits the highest electron mobility of up to 0.50 cm2 V-1 s-1. Our results set an interesting path to further utilize the electron-deficient thiazole block in semiconducting materials.
AB - A series of four donor-acceptor conjugated copolymers P1-P4 with linear and branched side chains based on a ladder-type indacenodithiazole (IDTz) moiety containing an electron-deficient thiazole unit are copolymerized with di-2-thienyl-2,1,3-benzothiadiazole (DTBT) and 4,7-di(thien-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (DTBTff) as building blocks. Their optical, electrochemical, and thermal properties and charge transport behavior in organic field-effect transistors (OFETs) are studied. All copolymers exhibit nearly identical features in solution with good solubility. In the solid state, P1 does not exhibit a significant shift, while P3 shows a 27 nm red shift, thus illustrating the influence of the side chain. In the case of copolymers P1 and P2 having linear side chains, there is a clear effect of fluorination on the film morphology, while it is less pronounced in the case of polymers P3 and P4 having branched side chains. All copolymers P1-P4 have similar highest occupied molecular orbitals regardless of fluorination, while fluorinated polymers P2 and P4 result in an increase in the lowest unoccupied molecular orbital. In addition, density functional theory calculations reveal that the energy levels of IDTz are down-shifted in comparison to its IDT counterpart containing an electron-rich thiophene unit. OFETs based on all copolymers exhibit ambipolar behavior; among the four copolymers, P2 having a linear dodecyl side chain exhibits remarkable transport properties with saturated hole mobility as high as 0.87 cm2 V-1 s-1, while P3 exhibits the highest electron mobility of up to 0.50 cm2 V-1 s-1. Our results set an interesting path to further utilize the electron-deficient thiazole block in semiconducting materials.
UR - http://www.scopus.com/inward/record.url?scp=85075159317&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075159317&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.9b03525
DO - 10.1021/acs.chemmater.9b03525
M3 - Article
AN - SCOPUS:85075159317
SN - 0897-4756
VL - 31
SP - 9488
EP - 9496
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 22
ER -