Indium flux-growth of Eu2AuGe3: A new germanide with an AlB2 superstructure

C. Peter Sebastian, Christos D. Malliakas, Maria Chondroudi, Inga Schellenberg, Sudhindra Rayaprol, Rolf Dieter Hoffmann, Rainer Pöttgen, Mercouri G. Kanatzidis

Research output: Contribution to journalArticlepeer-review

49 Scopus citations


The germanide Eu2AuGe3 was obtained as large single crystals in high yield from a reaction of the elements in liquid indium. At room temperature Eu2AuGe3 crystallizes with the Ca 2AgSi3 type, space group Fmmm, an ordered variant of the AlB2 type: a = 857.7(4), b = 1485.5(10), c = 900.2(4) pm. The gold and germanium atoms build up slightly distorted graphite-like layers which consist of Ge6 and Au2Ge4 hexagons, leading to two different hexagonal-prismatic coordination environments for the europium atoms. Magnetic susceptibility data showed Curie-Weiss law behavior above 50 K and antiferromagnetic ordering at 11 K. The experimentally measured magnetic moment indicates divalent europium. The compound exhibits a distinct magnetic anisotropy based on single crystal measurements and at 5 K it shows a metamagnetic transition at ∼10 kOe. Electrical conductivity measurements show metallic behavior. The structural transition at 130 K observed in the single crystal data was very well supported by the conductivity measurements. 151Eu Mössbauer spectroscopic data show an isomer shift of -11.24 mm/s at 77 K, supporting the divalent character of europium. In the magnetically ordered regime one observes superposition of two signals with hyperfine fields of 26.0 (89%) and 3.5 (11%) T, respectively, indicating differently ordered domains.

Original languageEnglish (US)
Pages (from-to)9574-9580
Number of pages7
JournalInorganic chemistry
Issue number20
StatePublished - Oct 18 2010

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Indium flux-growth of Eu2AuGe3: A new germanide with an AlB2 superstructure'. Together they form a unique fingerprint.

Cite this