Abstract
The role of N-linked glycosylation in the assembly, intracellular transport, and fusion activity of the paramyxovirus SV5 fusion (F) protein was examined. Each of the six potential glycosylation sites in the F protein was individually removed by oligonucleotide-directed mutagenesis on a cDNA clone encoding the SV5 F protein. When the mutant F proteins were expressed in eukaryotic cells using the vaccinia virus-T7 transient expression system they all had a significant change in gel mobility, indicating that all six sites in the F protein are used for the addition of N-linked oligosaccharides. All of the mutant F proteins could form a homooligomer. Removal of individual carbohydrate chains from the F2 subunit had little effect on the surface expression of the F protein. However, removal of individual carbohydrate chains from the F1 subunit had deleterious effects, which ranged from a partial delay in intracellular transport and decreased stability of the protein to severe transport delays and acute instability of the F protein.
Original language | English (US) |
---|---|
Article number | 71251 |
Pages (from-to) | 250-256 |
Number of pages | 7 |
Journal | Virology |
Volume | 209 |
Issue number | 1 |
DOIs | |
State | Published - May 10 1995 |
ASJC Scopus subject areas
- Virology