Abstract
To regulate a social system comprised of self-interested agents, economic incentives are often required to induce a desirable outcome. This incentive design problem naturally possesses a bilevel structure, in which a designer modifies the rewards of the agents with incentives while anticipating the response of the agents, who play a non-cooperative game that converges to an equilibrium. The existing bilevel optimization algorithms raise a dilemma when applied to this problem: anticipating how incentives affect the agents at equilibrium requires solving the equilibrium problem repeatedly, which is computationally inefficient; bypassing the time-consuming step of equilibrium-finding can reduce the computational cost, but may lead the designer to a sub-optimal solution. To address such a dilemma, we propose a method that tackles the designer's and agents' problems simultaneously in a single loop. Specifically, at each iteration, both the designer and the agents only move one step. Nevertheless, we allow the designer to gradually learn the overall influence of the incentives on the agents, which guarantees optimality after convergence. The convergence rate of the proposed scheme is also established for a broad class of games.
Original language | English (US) |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
Editors | S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh |
Publisher | Neural information processing systems foundation |
ISBN (Electronic) | 9781713871088 |
State | Published - 2022 |
Event | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States Duration: Nov 28 2022 → Dec 9 2022 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 35 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 11/28/22 → 12/9/22 |
Funding
Mingyi Hong’s research is funded by NSF under the award numbers CIF-1910385 and CMMI-1727757. Yu (Marco) Nie’s research is funded by NSF under the award number CMMI-2225087. Zhaoran Wang’s research is funded by NSF under the award number ECCS-2048075.
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing