Inference on regressions with interval data on a regressor or outcome

Charles Manski*, Elie Tamer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

194 Scopus citations

Abstract

This paper examines inference on regressions when interval data are available on one variable, the other variables being measured precisely. Let a population be characterized by a distribution P(y, x, v, v0, v1), where y ε R1, x ε Rk, and the real variables (v, v0, v1) satisfy v0 ≤ v ≤ v1. Let a random sample be drawn from P and the realizations of (y, x, v0, v1) be observed, but not those of v. The problem of interest may be to infer E(y|x, v) or E(v|x). This analysis maintains Interval (I), Monotonicity (M), and Mean Independence (MI) assumptions: (I) P(v0 ≤ v ≤ v1) = 1; (M)E(y|x, v) is monotone in v; (MI) E(y|x, v, v0, v1) = E(y|x, v). No restrictions are imposed on the distribution of the unobserved values of v within the observed intervals [v0, v1]. It is found that the IMMI Assumptions alone imply simple nonparametric bounds on E(y|x, v) and E(v|x). These assumptions invoked when y is binary and combined with a semiparametric binary regression model yield an identification region for the parameters that may be estimated consistently by a modified maximum score (MMS) method. The IMMI assumptions combined with a parametric model for E(y|x, v) or E(v|x) yield an identification region that may be estimated consistently by a modified minimum-distance (MMD) method. Monte Carlo methods are used to characterize the finite-sample performance of these estimators. Empirical case studies are performed using interval wealth data in the Health and Retirement Study and interval income data in the Current Population Survey.

Original languageEnglish (US)
Pages (from-to)519-546
Number of pages28
JournalEconometrica
Volume70
Issue number2
DOIs
StatePublished - Jan 1 2002

Keywords

  • Identification
  • Interval data
  • Regression

ASJC Scopus subject areas

  • Economics and Econometrics

Fingerprint

Dive into the research topics of 'Inference on regressions with interval data on a regressor or outcome'. Together they form a unique fingerprint.

Cite this