Inferring spike-timing-dependent plasticity from spike train data

Ian H. Stevenson*, Konrad P. Kording

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Synaptic plasticity underlies learning and is thus central for development, memory, and recovery from injury. However, it is often difficult to detect changes in synaptic strength in vivo, since intracellular recordings are experimentally challenging. Here we present two methods aimed at inferring changes in the coupling between pairs of neurons from extracellularly recorded spike trains. First, using a generalized bilinear model with Poisson output we estimate time-varying coupling assuming that all changes are spike-timing-dependent. This approach allows model-based estimation of STDP modification functions from pairs of spike trains. Then, using recursive point-process adaptive filtering methods we estimate more general variation in coupling strength over time. Using simulations of neurons undergoing spike-timing dependent modification, we show that the true modification function can be recovered. Using multi-electrode data from motor cortex we then illustrate the use of this technique on in vivo data.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
StatePublished - 2011
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: Dec 12 2011Dec 14 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Other

Other25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1112/14/11

ASJC Scopus subject areas

  • Information Systems

Fingerprint

Dive into the research topics of 'Inferring spike-timing-dependent plasticity from spike train data'. Together they form a unique fingerprint.

Cite this