Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study

Fuzeng Ren*, Ding Yonghui, Yang Leng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

95 Scopus citations

Abstract

A combined experimental and computational approach was employed to investigate the feasibility and effectiveness of characterizing carbonated apatite (CAp) by infrared (IR) spectroscopy. First, an experimental comparative study was conducted to identify characteristic IR vibrational bands of carbonate substitution in the apatite lattice. The IR spectra of pure hydroxyapatite (HA), carbonate adsorbed on the HA surface, a physical mixture of HA and sodium carbonate monohydrate, a physical mixture of HA and calcite, synthetic CAps prepared using three methods (precipitation method, hydrothermal route, and solid-gas reaction at high temperature) and biological apatites (human enamel, human cortical bone, and two animal bones) were compared. Then, the IR vibrational bands of carbonate in CAp were calculated with density functional theory. The experimental study identified characteristic IR bands of carbonate that cannot be generated from surface adsorption or physical mixtures and the results show that the bands at ∼880, 1413, and 1450 cm-1 should not be used as characteristic bands of CAp since they could result from carbonate adsorbed on the apatite crystals surface or present as a separate phase. The combined experimental and computational study reveals that the carbonate v3 bands at ∼1546 and 1465 cm-1 are, respectively, the IR signature bands for type A CAp and type B CAp.

Original languageEnglish (US)
Pages (from-to)496-505
Number of pages10
JournalJournal of Biomedical Materials Research - Part A
Volume102
Issue number2
DOIs
StatePublished - Feb 2014

Keywords

  • carbonated apatite
  • density functional theory
  • infrared spectroscopy

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study'. Together they form a unique fingerprint.

Cite this