TY - JOUR
T1 - Inhibitor sensitivity of pulmonary vascular carbonic anhydrase
AU - Heming, T. A.
AU - Vanoye, C. G.
AU - Stabenau, E. K.
AU - Roush, E. D.
AU - Fierke, C. A.
AU - Bidani, A.
PY - 1993
Y1 - 1993
N2 - The inhibitor sensitivity of pulmonary vascular carbonic anhydrase (CA) was examined in situ to identify the specific isozyme responsible for vascular activity and to study its distribution in the lung. Vascular CA activity was monitored in isolated rat lungs by measuring the rate of CO2 excretion and the magnitude of postcapillary CO2-HCO3-H+ disequilibria. Lungs were perfused with isotonic salines containing gluconate, sulfate, Cl, or I-, with or without sulfonamide derivatives. Effects of a CA inhibitor purified from porcine blood plasma were also determined. Vascular CA activity was unaffected by gluconate, sulfate, Cl, and I- (≤100 mM). Sulfonamides with vastly different rates of membrane permeation (i.e., readily permeating ethoxzolamide, slowly permeating acetazolamide, and membrane-impermeant quaternary ammonium sulfanilamide) were capable of accessing all vascular CA with similar rates of access. The porcine inhibitor of CA (340 nM) produced a significant, but submaximal, inhibition of vascular CA activity. The data suggest that pulmonary vascular activity reflects a high-activity membrane- bound isozyme, CA IV, which is located on the extracellular luminal surface of capillary endothelial cells.
AB - The inhibitor sensitivity of pulmonary vascular carbonic anhydrase (CA) was examined in situ to identify the specific isozyme responsible for vascular activity and to study its distribution in the lung. Vascular CA activity was monitored in isolated rat lungs by measuring the rate of CO2 excretion and the magnitude of postcapillary CO2-HCO3-H+ disequilibria. Lungs were perfused with isotonic salines containing gluconate, sulfate, Cl, or I-, with or without sulfonamide derivatives. Effects of a CA inhibitor purified from porcine blood plasma were also determined. Vascular CA activity was unaffected by gluconate, sulfate, Cl, and I- (≤100 mM). Sulfonamides with vastly different rates of membrane permeation (i.e., readily permeating ethoxzolamide, slowly permeating acetazolamide, and membrane-impermeant quaternary ammonium sulfanilamide) were capable of accessing all vascular CA with similar rates of access. The porcine inhibitor of CA (340 nM) produced a significant, but submaximal, inhibition of vascular CA activity. The data suggest that pulmonary vascular activity reflects a high-activity membrane- bound isozyme, CA IV, which is located on the extracellular luminal surface of capillary endothelial cells.
KW - capillary gas exchange
KW - carbon dioxide
KW - lungs
KW - rat
UR - http://www.scopus.com/inward/record.url?scp=0027453488&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027453488&partnerID=8YFLogxK
U2 - 10.1152/jappl.1993.75.4.1642
DO - 10.1152/jappl.1993.75.4.1642
M3 - Article
C2 - 8282615
AN - SCOPUS:0027453488
SN - 8750-7587
VL - 75
SP - 1642
EP - 1649
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 4
ER -