TY - JOUR
T1 - Insulin-like growth factors and binding proteins in the fetal rat
T2 - Alterations during maternal starvation and effects in fetal brain cell culture
AU - Shambaugh, G. E.
AU - Radosevich, J. A.
AU - Glick, R. P.
AU - Gu, D. S.
AU - Metzger, B. E.
AU - Unterman, T. G.
PY - 1993/6
Y1 - 1993/6
N2 - Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction. Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.
AB - Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction. Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.
KW - Insulin-like growth factor-I
KW - Insulin-like growth factor-II
KW - MTT activity
KW - binding assay
KW - brain
KW - cell culture
KW - fetal
KW - insulin-like growth factor binding protein-1
KW - plasma concentrations
UR - http://www.scopus.com/inward/record.url?scp=0027616475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027616475&partnerID=8YFLogxK
U2 - 10.1007/BF00966784
DO - 10.1007/BF00966784
M3 - Article
C2 - 8510796
AN - SCOPUS:0027616475
SN - 0364-3190
VL - 18
SP - 695
EP - 703
JO - Neurochemical Research
JF - Neurochemical Research
IS - 6
ER -