TY - JOUR
T1 - Insulin secretory deficiency and glucose intolerance in Rab3A Null mice
AU - Yaekura, Kazuro
AU - Julyan, Richard
AU - Wicksteed, Barton L.
AU - Hays, Lori B.
AU - Alarcon, Cristina
AU - Sommers, Scott
AU - Poitout, Vincent
AU - Baskin, Denis G.
AU - Wang, Yong
AU - Philipson, Louis H.
AU - Rhodes, Christopher J.
PY - 2003/3/14
Y1 - 2003/3/14
N2 - Insulin secretory dysfunction of the pancreatic β-cell in type-2 diabetes is thought to be due to defective nutrient sensing and/or deficiencies in the mechanism of insulin exocytosis. Previous studies have indicated that the GTP-binding protein, Rab3A, plays a mechanistic role in insulin exocytosis. Here, we report that Rab3A-/- mice develop fasting hyperglycemia and upon a glucose challenge show significant glucose intolerance coupled to ablated first-phase insulin release and consequential insufficient insulin secretion in vivo, without insulin resistance. The in vivo insulin secretory response to arginine was similar in Rab3A-/- mice as Rab3A+/+ control animals, indicating a phenotype reminiscent of insulin secretory dysfunction found in type-2 diabetes. However, when a second arginine dose was given 10 min after, there was a negligible insulin secretory response in Rab3A-/- mice, compared with that in Rab3A+/+ animals, that was markedly increased above that to the first arginine stimulus. There was no difference in β-cell mass or insulin production between Rab3A-/- and Rab3A+/+ mice. However, in isolated islets, secretagogue-induced insulin release (by glucose, GLP-1, glyburide, or fatty acid) was ∼60-70% lower in Rab3A-/- islets compared with Rab3A+/+ controls. Nonetheless, there was a similar rate of glucose oxidation and glucose-induced rise in cytosolic [Ca2+]i flux between Rab3A-/- and Rab3A+/+ islet β-cells, indicating the mechanistic role of Rab3A lies downstream of generating secondary signals that trigger insulin release, at the level of secretory granule transport and/or exocytosis. Thus, Rab3A plays an important in vivo role facilitating the efficiency of insulin exocytosis, most likely at the level of replenishing the ready releasable pool of β-granules. Also, this study indicates, for the first time, that the in vivo insulin secretory dysfunction found in type-2 diabetes can lie solely at the level of defective insulin exocytosis.
AB - Insulin secretory dysfunction of the pancreatic β-cell in type-2 diabetes is thought to be due to defective nutrient sensing and/or deficiencies in the mechanism of insulin exocytosis. Previous studies have indicated that the GTP-binding protein, Rab3A, plays a mechanistic role in insulin exocytosis. Here, we report that Rab3A-/- mice develop fasting hyperglycemia and upon a glucose challenge show significant glucose intolerance coupled to ablated first-phase insulin release and consequential insufficient insulin secretion in vivo, without insulin resistance. The in vivo insulin secretory response to arginine was similar in Rab3A-/- mice as Rab3A+/+ control animals, indicating a phenotype reminiscent of insulin secretory dysfunction found in type-2 diabetes. However, when a second arginine dose was given 10 min after, there was a negligible insulin secretory response in Rab3A-/- mice, compared with that in Rab3A+/+ animals, that was markedly increased above that to the first arginine stimulus. There was no difference in β-cell mass or insulin production between Rab3A-/- and Rab3A+/+ mice. However, in isolated islets, secretagogue-induced insulin release (by glucose, GLP-1, glyburide, or fatty acid) was ∼60-70% lower in Rab3A-/- islets compared with Rab3A+/+ controls. Nonetheless, there was a similar rate of glucose oxidation and glucose-induced rise in cytosolic [Ca2+]i flux between Rab3A-/- and Rab3A+/+ islet β-cells, indicating the mechanistic role of Rab3A lies downstream of generating secondary signals that trigger insulin release, at the level of secretory granule transport and/or exocytosis. Thus, Rab3A plays an important in vivo role facilitating the efficiency of insulin exocytosis, most likely at the level of replenishing the ready releasable pool of β-granules. Also, this study indicates, for the first time, that the in vivo insulin secretory dysfunction found in type-2 diabetes can lie solely at the level of defective insulin exocytosis.
UR - http://www.scopus.com/inward/record.url?scp=0038660725&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038660725&partnerID=8YFLogxK
U2 - 10.1074/jbc.M211352200
DO - 10.1074/jbc.M211352200
M3 - Article
C2 - 12510060
AN - SCOPUS:0038660725
SN - 0021-9258
VL - 278
SP - 9715
EP - 9721
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -