TY - GEN
T1 - Integrality gaps for sherali-adams relaxations
AU - Charikar, Moses
AU - Makarychev, Konstantin
AU - Makarychev, Yury
PY - 2009
Y1 - 2009
N2 - We prove strong lower bounds on integrality gaps of Sherali- Adams relaxations for MAX CUT, Vertex Cover, Sparsest Cut and other problems. Our constructions show gaps for Sherali-Adams relaxations that survive rounds of lift and project. For MAX CUT and Vertex Cover, these show that even n δ rounds of Sherali-Adams do not yield a better than 2 - ε approximation. The main combinatorial challenge in constructing these gap examples is the construction of a fractional solution that is far from an integer solution, but yet admits consistent distributions of local solutions for all small subsets of variables. Satisfying this consistency requirement is one of the major hurdles to constructing Sherali-Adams gap examples. We present a modular recipe for achieving this, building on previous work on metrics with a local-global structure. We develop a conceptually simple geometric approach to constructing Sherali-Adams gap examples via constructions of consistent local SDP solutions. This geometric approach is surprisingly versatile. We construct Sherali-Adams gap examples for Unique Games based on our construction for MAX CUT together with a parallel repetition like procedure. This in turn allows us to obtain Sherali-Adams gap examples for any problem that has a Unique Games based hardness result (with some additional conditions on the reduction from Unique Games). Using this, we construct 2-ε gap examples for Maximum Acyclic Subgraph that rules out any family of linear constraints with support at most nδ.
AB - We prove strong lower bounds on integrality gaps of Sherali- Adams relaxations for MAX CUT, Vertex Cover, Sparsest Cut and other problems. Our constructions show gaps for Sherali-Adams relaxations that survive rounds of lift and project. For MAX CUT and Vertex Cover, these show that even n δ rounds of Sherali-Adams do not yield a better than 2 - ε approximation. The main combinatorial challenge in constructing these gap examples is the construction of a fractional solution that is far from an integer solution, but yet admits consistent distributions of local solutions for all small subsets of variables. Satisfying this consistency requirement is one of the major hurdles to constructing Sherali-Adams gap examples. We present a modular recipe for achieving this, building on previous work on metrics with a local-global structure. We develop a conceptually simple geometric approach to constructing Sherali-Adams gap examples via constructions of consistent local SDP solutions. This geometric approach is surprisingly versatile. We construct Sherali-Adams gap examples for Unique Games based on our construction for MAX CUT together with a parallel repetition like procedure. This in turn allows us to obtain Sherali-Adams gap examples for any problem that has a Unique Games based hardness result (with some additional conditions on the reduction from Unique Games). Using this, we construct 2-ε gap examples for Maximum Acyclic Subgraph that rules out any family of linear constraints with support at most nδ.
KW - Lift-and-project methods
KW - Local global metric spaces
KW - Sherali-Adams hierarchy
UR - http://www.scopus.com/inward/record.url?scp=70350671702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350671702&partnerID=8YFLogxK
U2 - 10.1145/1536414.1536455
DO - 10.1145/1536414.1536455
M3 - Conference contribution
AN - SCOPUS:70350671702
SN - 9781605585062
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 283
EP - 292
BT - STOC'09 - Proceedings of the 2009 ACM International Symposium on Theory of Computing
T2 - 41st Annual ACM Symposium on Theory of Computing, STOC '09
Y2 - 31 May 2009 through 2 June 2009
ER -