Abstract
Allelic differences between the two homologous chromosomes can affect the propensity of inheritance in humans; however, the extent of such differences in the human genome has yet to be fully explored. Here we delineate allelic chromatin modifications and transcriptomes among a broad set of human tissues, enabled by a chromosome-spanning haplotype reconstruction strategy. The resulting large collection of haplotype-resolved epigenomic maps reveals extensive allelic biases in both chromatin state and transcription, which show considerable variation across tissues and between individuals, and allow us to investigate cis-regulatory relationships between genes and their control sequences. Analyses of histone modification maps also uncover intriguing characteristics of cis-regulatory elements and tissue-restricted activities of repetitive elements. The rich data sets described here will enhance our understanding of the mechanisms by which cis-regulatory elements control gene expression programs.
Original language | English (US) |
---|---|
Pages (from-to) | 350-354 |
Number of pages | 5 |
Journal | Nature |
Volume | 518 |
Issue number | 7539 |
DOIs | |
State | Published - Feb 19 2015 |
Funding
Acknowledgements This work is supported by the NIH Epigenome Roadmap Project (U01 ES017166), CIRM RN2-00905-1, NIH ES017166, NSFC 91019016, NBRPC 2012CB316503 and NIH Fellowship Grants F32HL110473 and K99HL119617. We thank A. Kulkarni and J. Wu for help with processing RNA-seq data sets, and Y. He and M. Schultz for discussions regarding allelic analyses of RNA-seq data sets. We also thank members of the Ren laboratory for comments.
ASJC Scopus subject areas
- General